IoT – Opportunities and Challenges for the Latin American Region

Victor Grimblatt
R&D Group Director
April 2019
Synopsys Today: From Silicon to Software

FY18 Revenue: ~$3.121B

Employees: >13,457

Patents: 3,129

Offices: 120

#1 electronic design automation tools & services

Broadest IP portfolio and #1 interface, analog, embedded memories & physical IP

‘Leader’ in Gartner’s Magic Quadrant for application security testing
Synopsys: Silicon to Software

**Software**
- Application security testing & quality
- Leader in Gartner’s Magic Quadrant

**Verification**
- Fastest engines & unified platform
- HW/SW verification & early SW bring-up

**IP**
- Broadest portfolio of silicon-proven IP
- #1 interface, analog, embedded mem. & phys. IP

**Design**
- Digital & custom AMS platforms
- Best quality of results & highest productivity

**Silicon**
- TCAD, lithography tools & yield optimization
- Down to 5nm & below
Agenda

• Main Concepts
• Components and Communications
• Application Domains
• Challenges
• Market Predictions
IoT – Main Concepts
What is IoT?
IoT is anything that’s connected to a network (including internet) or other machines and works autonomously without needing human intervention
The Internet of Things (IoT) is the network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data.
IoT allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit.
Things
IoT – More Definitions

• Various Names – One Concept
  – M2M (Machine to Machine)
  – “Internet of Everything” (Cisco Systems)
  – “World Size Web” (Bruce Schneier)
  – “Skynet” (Terminator movie)

• Industrial IoT
  – Usage of IoT technology in the business and manufacture.
  – Three main areas:
    – Building automation: Heating, lighting, security, etc.
    – Smart maintenance: Applied to company assets and management systems.
    – Machine automation: Add IoT to precision mechanics and production techniques.
    – Other applications (agriculture, mining, cattle raising, etc.)
IoT Perspective

Any time

On the move
Outdoors and indoors
Nights and daytime

Outdoors
Indoors
On the move

Any place

Human to human (H2H)
Human to thing (H2T)
Thing to thing (T2T)

Any thing
Hype Cycle de Gartner
# Historical Facts

<table>
<thead>
<tr>
<th>Year</th>
<th>Device</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>Mario Cardullo receives the patent for first RFID tag</td>
<td>US Patent US 3713148 A</td>
</tr>
<tr>
<td>1993</td>
<td>Internet-connected coffee pot at University of Cambridge (first internet-connected camera)</td>
<td><a href="https://www.cl.cam.ac.uk/coffee/qsf/coffee.html">https://www.cl.cam.ac.uk/coffee/qsf/coffee.html</a></td>
</tr>
</tbody>
</table>
## Historical Facts

<table>
<thead>
<tr>
<th>Year</th>
<th>Device</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>IPSO Alliance formed to promote IP on objects, first IoT-focused alliance</td>
<td><a href="https://www.ipso-alliance.org">https://www.ipso-alliance.org</a></td>
</tr>
</tbody>
</table>
IoT – Why Now?

• Sensors and communication devices cost has decreased. They can be added to other devices (e.g. washing machines, traffic light, etc.) without impacting final cost.
• Wireless communications are available in almost all places, there is a lot to do in rural zones.
• There are communication options without operating costs.
• Power consumption has decreased allowing devices to work longer with the same battery
Key Players Enabling IoT

- Semiconductor Industry: Lower barriers to product creation
- Cloud Industry: Lower barriers to create new services
- Telecom Industry: Lower barriers to be connected.
IoT can be improved through

- Artificial intelligence
- Machine Learning
- Deep Learning
- Neural network
Artificial Intelligence

Everyday AI
- Speech Recognition
- Ride Sharing
- Autopilot on Aircrafts

Emerging AI
- News Generation
- Purchase Prediction
- Fraud Detection
- Touch & Image Recognition
- Autonomous vehicles

$38.6B
AI Revenue by 2025

Source: Tractica
Defining ML & AI

• Artificial Intelligence
  – Human levels of intelligence exhibited by machines
  – Narrow AI: Technology outperforming humans in a narrowly defined task

• Machine learning
  – An application of artificial intelligence that uses algorithms to analyze large amounts of data and then infers some information about the real world from the data

• Neural Networks
  – A class of machine learning algorithms – modeled after the human brain with a neuron representing the computational unit and the network describes how these units are connected to each other

• Deep Learning
  – A subset of machine learning using artificial neural networks with input, output and ‘hidden’ intermediate. Deep neural networks are capable of learning using large data sets
Components and Communications
From the Edge to the Cloud

**IoT Edge Devices**
(Smart Devices)

“Things” with sensors & actuators that monitor, process, and control.

**Aggregation Layers**
(Hubs/Gateways)

Connectivity & Interfaces to aggregate the edge data to send to the cloud.

**Remote Processing**
(Cloud Based)

Applications to analyze the data and offer cloud services.
IoT Architecture

• 4 layers architecture
  – Apps.
  – Cloud.
  – Gateway.
  – Edge.
IoT Architecture

• Composed by
  – Sensors / Actuators
  – Devices
  – Gateway
  – Cloud
How to Connect a Thing to Internet?
What is the Node?

- Sensors
- Actuators
- Digital
- RF
- Security
- Network access
- Power Supply
How to Connect a Thing to Internet?

- Node (Edge)
- Radio link
- Network link
- End user
Connection Types and How to Choose

Distancia

WWAN
10km

WWAN
1km

WLAN
100m

WHAN
10m

WPAN
1m

100 kbps

1 Mpbs

10 Mpbs

100 Mpbs

LPWAN
Low Power Wide Area

Cellular (2G, 3G, 4G)

LPWAN
Low Power Wide Area

Cellular (2G, 3G, 4G)
LPWAN (Low Power Wide Area)

- Licensed
  - 2G
  - 4G
- Free band
  - Sigfox
  - LoRa
### How IoT Works? – Used Technologies

<table>
<thead>
<tr>
<th>RFID</th>
<th>Sensor</th>
<th>Smart Tech</th>
<th>Nano Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>• identify and track</td>
<td>• collect and process the data to</td>
<td>• enhance the power of the network</td>
<td>• make the smaller and smaller</td>
</tr>
<tr>
<td>the data of things</td>
<td>detect the changes in the physical</td>
<td>by devolving processing capabilities</td>
<td>things have the ability to</td>
</tr>
<tr>
<td></td>
<td>status of things</td>
<td>to different part of the network</td>
<td>connect and interact</td>
</tr>
</tbody>
</table>

© 2019 Synopsys, Inc.
Data Processing

• Cloud
  – Only convenient when an action is not immediately requested.
  – Can produce bandwidth issues.
  – Cannot send all data to the cloud (no changes or very small changes).

• Gateway
  – Useful when having a sensor network.

• Edge
  – Becoming common.
  – Very efficient.
  – Needed for fast action.
Edge computing refers to the computation and analysis of data on distributed devices positioned at the edge of a network rather than on centralized systems.
Gartner anticipates that by 2025, 75% of data processing will move to the edge – up from 10% in 2018
Edge Architecture

- Battery
- Energy Harvesters
- Software
- Processor(s)
- Storage
- RF...
- Sensors
- Actuators
- Energy
- Data
## Key Design Requirements

<table>
<thead>
<tr>
<th>Wireless Connectivity</th>
<th>Security</th>
<th>Sensor Processing</th>
<th>Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>What de-facto standards will emerge?</td>
<td>Pervasive security needed but what exactly is required?</td>
<td>How much processing and where will the on-chip integration be?</td>
<td>Add connectivity, security, &amp; processing while extending battery life</td>
</tr>
</tbody>
</table>
IoT – Challenges
IoT: Incredible Opportunity with Hurdles…

Billions of Edge Devices

- Battery life is expected to extend while adding connectivity.
- Type of functionality, connectivity, and energy use dictate costs.
- Wireless, Power Management, Memories, Sensors, Processors, etc…
- In 2016, New Hacks To Worry About: Smart Homes & Connected Cars.
Energy Consumption
IoT Security Risks

• Disruption and denial-of-service attacks
• Understanding the complexity of vulnerabilities
• IoT vulnerability management
• Identifying, implementing security controls
• Fulfilling the need for security analytics capabilities
• Modular hardware and software components
• Rapid demand in bandwidth requirement
Connected Devices at Risk of Being Attacked

Attacks Are on the Rise & Evolve Continuously

- Everyone is affected, from consumers and enterprises, to service providers and manufacturers.

- Security is crucial and needs to be addressed at all levels, starting with the SoC
  - Latest hacks result in investigation.
  - Companies need to be prepared to justify the security of their products.

- Growth: 30% to 95% in 2020.

Recent Example: Baby Monitor Attack

- Remote communication attack
- Replace SW in SoC
- Escalate privilege attack in device
Understanding Security

What is meant by “security”?

- **Confidentiality**: protecting access to information.
- **Integrity**: ensuring data has not been altered/tampered with.
- **Authenticity**: knowing the sender and receiver of transmitted information.

Common security technologies

- Cryptography and secure protocols.
- Platform security.
- Tamper detection/prevention.

Key question: what are you trying to protect?
The Cost of Security
Differs Across Market Segments

“Value” of Attack
- Reward ($$$ or fun).
- Technical challenge.
- Terrorism.

“Cost” vs. “Risk”
- Time spent.
- Cost of equipment.
- Expertise required.
- System access.
- Legal implications.
Security Threats are a Top Concern for IoT Developers

Security Must Be Addressed at All Levels and Begins at the Processor

**Network Level**
- Communication attacks
- Software attacks

**Chip Level**
- Software attacks
- Invasive Hardware attacks

**Device Level**
- Software attacks
- Non-invasive hardware attacks

**Communication**
- Sniffing of sensitive data (passwords).
- Direct remote attacks (backdoors).
- Indirect remote attacks (remote nodes).

**Software**
- Malware (viruses, rootkits).
- Exploit of buffer/stack overflows.
- Privilege level tampering.

**Hardware**
- Non-invasive (debug ports, side channel).
- Invasive (decapsulation, probing).
Challenges in IoT Implementation

- 32% IoT security
- 31% Cross-department cooperation
- 30% Integration of disparate data
- 29% Availability of skilled talent

Five Essential Requirements

• Edge computing/analytics
  – Data needs to be analyzed in real time.
  – Rapid response to sudden change.
  – An edge processing can respond in a few milliseconds. A cloud system will take more than a 100 milliseconds.

• Data ingestion and stream processing
  – Device telemetry data being imported and converted into a format usable by cloud-based IoT services.
  – Gathering data for multiple devices.
  – Need to transform for cloud-based analytics platforms.
  – 60% of IT executives say collecting, storing, integrating, and analyzing real-time data from endpoint devices is a key barrier to a successful IoT implementation.

• Device management
  – Covers the hardware, software and processes that ensure devices are properly registered, managed, secured and upgraded.
  – Staff is notified if a device fails
  – Device management should reliable scale to billions of connected devices and trillion of messages

Source: Cognizant, 2019.
Five Essential Requirements

- Cold path and advanced analytics
  - Large amount of data is analyzed by advanced algorithms after the data is stored on the cloud platform.
  - Deep analysis of IoT data should result in cost savings.
  - It should allow to create new business opportunities.
  - Large scale processing can include loads greater than 100,000 events per second (payload size of over 100 MB per second).

- Enterprise integration with business systems
  - Integration with business applications and enterprise systems enables the sharing of raw and processed data, as well as analysis driven insights
  - IoT insights need to be delivered to enterprise systems.
  - IoT devices should receive reference metadata to interpret device data.
  - Results: Improved efficiencies, reduced cost, heightened customer satisfaction and the ability to create and lead new markets.

Source: Cognizant, 2019.
How to Find Success with the IoT

• Begin with the business case, not with the technology.
• Develop a comprehensive IoT strategy.
• Start small to go big.
• It is all about co-creation.
• View the IoT as a source of competitive advantage and competitive threat.
• Instill a sense of urgency in yourself, your team, and your company.
IoT Application Domains
IoT is everywhere and almost in all domains
# Top Industries Key for IoT Applications

<table>
<thead>
<tr>
<th>Smart Grid</th>
<th>Smart Health</th>
<th>Smart Home</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Smart Grid Image" /></td>
<td><img src="image2.png" alt="Smart Health Image" /></td>
<td><img src="image3.png" alt="Smart Home Image" /></td>
</tr>
<tr>
<td>Smart Cities</td>
<td>Smart Industries</td>
<td>Smart TV</td>
</tr>
<tr>
<td><img src="image4.png" alt="Smart Cities Image" /></td>
<td><img src="image5.png" alt="Smart Industries Image" /></td>
<td><img src="image6.png" alt="Smart TV Image" /></td>
</tr>
<tr>
<td>Smart Watch</td>
<td>Smart Car</td>
<td>Smart Kegs</td>
</tr>
<tr>
<td><img src="image7.png" alt="Smart Watch Image" /></td>
<td><img src="image8.png" alt="Smart Car Image" /></td>
<td><img src="image9.png" alt="Smart Kegs Image" /></td>
</tr>
</tbody>
</table>
## IoT – Smart ...

<table>
<thead>
<tr>
<th>Smart Thing</th>
<th>Smart City-Environment</th>
<th>Smart Home</th>
<th>Smart Driving</th>
<th>Smart Industry</th>
</tr>
</thead>
</table>
| • Understands the environment  
• Manages data and transforms to Info  
• Connects to the world  
• Protects your data  
• Is energy efficient | • Infrastructure to improve traffic and municipal services  
• Smart grid  
• Intelligent, adaptive smart lighting  
• Smart buildings  
• Reducing waste | • Control of heating, air-con, appliances, locks and alarms  
• Smart meters to connect homes to the smart grid  
• More energy efficiency, convenience, comfort and security | • Making driving safer for the driver and car occupants and for other road users  
• Improving power and fuel efficiency  
• Moving towards electric vehicles  
• Connected driving experience | • More efficient factories  
• More flexibility and customization  
• More sustainable production  
• Safer working environment  
• Better man-machine cooperation |
Industrial IoT

• Preventive maintenance on new and pre-existing factory machinery.
• Throughput increase through a real-time demand.
• Energy savings.
• Safety systems such as thermal sensing, pressure sensing, and gas leaks.
• Factory floor expert systems.
• Advanced manufacturing.
• Factory automation.
• Smart control of engines.
• 3D Printer.
• Industrial robots.
• Industrial lighting.
• Sensors for industry.
Consumer

• Smart home gadgetry
  – Smart irrigation.
  – Smart garage doors.
  – Smart locks.
  – Smart light.
  – Smart thermostats.
  – Smart security.

• Wearables
  – Health and movement trackers.
  – Smart clothing/wearables.

• Pets
  – Pet location systems.
  – Smart dog doors.
Healthcare

- In-home patient care.
- Learning models of predictive and preventive healthcare.
- Dementia and elderly care and tracking.
- Hospital equipment and supply asset tracking.
- Pharmaceutical tracking and security.
- Remote field medicine.
- Drug research.
- Patient fall indicators.
Agricultural and Environment

- Smart irrigation and fertilization techniques to improve yield.
- Smart lighting in nesting or poultry farming to improve yield.
- Livestock health and asset tracking.
- Preventive maintenance on remote farming equipment via manufacturer.
- Drones-based land surveys.
- Farm-to-market supply chain efficiencies with asset tracking.
- Robotic farming.
- Volcanic and fault line monitoring for predictive disasters.
Energy

• Oil ring analysis of thousands of sensors and data points for efficiency gains.
• Remote solar panel monitoring and maintenance.
• Hazardous analysis of nuclear facilities.
• Smart electric meters in a city wide deployment to monitor energy usage and demand.
• Real-time Blade adjustment as a function of weather on remote wind turbines.
Smart City

- Pollution control and regulatory analysis through environmental sensing.
- Microclimate weather predictions using citywide sensor networks.
- Efficiency gains and improved costs through waste management service on demand.
- Improved traffic flow and fuel economy through smart traffic light control and patterning.
- Energy efficiency of city lighting on demand.
- Smart snow plowing based on real-time road demand, weather conditions and nearby plows.
- Smart irrigation of Parks and public spaces, depending on weather and current usage.
- Smart cameras to watch for crime and real-time automated AMBER alerts.
- Smart parking lots to automatically find best space parking on demand.
- Bridge, street, and infrastructure wear an usage monitors to improve longevity and service.
Let’s see some examples
Smart Home

• Remote Monitoring/Control (Appliances)
• Safety
  – When do the doors open/close?
• Energy Management
  – Turn off the lights/AC?
• Maintenance
  – Are the sinks/pipes leaking?
• Entertainment Control
• ….
Smart Home – The Potential

- Air conditioning - 30% energy saving
  - From analog to digital
  - From AC to BLDC control
- Refrigerator – 40% energy saving
  - From on-off control to PWM
- Light and dimming – 25% energy saving
  - From on-off light to PWM dimming
- Washing machine – 40% energy saving
  - From class D to class A++
- Electronic lighting – 80% energy saving
  - From bulb lamps to tube lamps and LED
- Digital consumer power supply – 77% energy saving
  - Increasing efficiency above 98% in run mode
  - Decreasing stand-by power to < 1mW
Smart Grid

• Utility companies use IoT to improve
  – asset performance
  – reduce costs
  – infrastructure management,
  – lower supply chain risks and
  – empower employees and consumers
  – More efficient and proactive maintenance
Waste Management in Smart Cities

[Diagram showing a waste management system in a smart city, including infrastructure with access to energy sources and long-range data communication, a cloud platform that supports sensing as a service, and various waste collection and processing facilities.]

[Source: “Sensing as a Service Model for Smart Cities Supported by Internet of Things”, Charith Perera et al., Transactions on Emerging Telecommunications Technology, 2014]
Smart Shopping

(1) When entering the doors, scanners will identify the tags on her clothing.

(2) When shopping in the market, the goods will introduce themselves.

(3) When moving the goods, the reader will tell the staff to put a new one.

(4) When paying for the goods, the microchip of the credit card will communicate with the checkout reader.
How many steps have you walked today?
Smart Health – How Well Do I Sleep?
Industry 4.0
The Industrial Revolutions

1.0

2.0

3.0

4.0
Industry 1.0 Through 3.0 Explained

From (1.0) Benz Patent-Motorwagen (25 Configurations, 25 Cars Manufactured)
To (3.0) Mini (10 Million Configurations, 3 Million Cars Manufactured)
“The essence of the industry 4.0 vision, the internet of things, is the ubiquitous connection of people, things and machines. This connection is intended to produce a variety of new goods and services. Products, means of transport, or tools are expected to negotiate within a virtual marketplace regarding which production elements could best accomplish the next production step. This would create a seamless link between the virtual world and the physical objects within the real world.”

Source: D. Wegener, Siemens, Industry 4.0 Project Coordinator, 2015
Industry 4.0 Explained

Durum Wheat Semola + Water + 3D-Printer at Home + 3D-Design from the Internet

Indeed, a Great Deal of Opportunity!

Source: https://www.youtube.com/watch?v=oz6D1FXwuvA, Barilla, EXPO 2015
Similar Concepts

• Industrial Internet

• Smart Factory

• Factories of the Future

• Industry 4.0

• Advanced Manufacturing
Smart Industry – Main Trends

• Next level of automation with distributed control.
• Safer work environment and new models of human-machine interaction.
• Greater energy efficiency for industrial machinery.
• Capture and exploitation of manufacturing data.
• Artificial intelligence and machine learning
Mining 4.0
Autonomous Haulage System (Driverless Trucks)
~ 70 Trucks, > 4 Million Kilometers Driven, > 400 Million Tons Iron Ore Hauled

Pilbara, Western Australia; Source: G. Lilleyman, Rio Tinto, 2015
Mining 4.0
AutoHaul® (Driverless Trains)
2,000 Km, 190 Locomotives, > 350 Million Tons Iron Ore Hauled per Year

Pilbara, Western Australia; Source: G. Lilleyman, Rio Tinto, 2015
Transportation 4.0
Car Sharing in Rome, Italy (1 Car per 100 Customers)
Enjoy Is in the Cloud, Your Smartphone App Is on the Edge, and the Car Is the “Thing”

Source: Enjoy, 2015
Agriculture 4.0
Agriculture 4.0

30% Fertilizer Reduction, Higher Yield, Better Quality
IR Camera + MCU + RF +… Airborne + Variable Rate Fertilization

Breeding 4.0
Monitoring Cows near Gal’ed (Even Yitzhak), Israel
MCU + Sensors + GPS + RF + Solar Panels + … Google Maps

Courtesy of A. Gat, Moonitor Cows, Israel, 2015
2019 Trends

- Industrial and commercial applications Will drive the industry, not consumers.
- The Edge will be far more important that people realize.
- Machine “pishing” Will become a more urgent concern.
- Real-time data Will grow in importance.
- Smart equipment Will begin to get momentum.
- Rules and business practices for data sharing Will start to gel.
- Traditional businesses Will develop new business models out of IoT.
- IoT projects Will have to hit their numbers.
- IT (information technology) will meet OT Operation technology).

Market Predictions
Source: Internet of Things for Architects, Perry Lea, Packt, 2018
IoT Connected Devices Installed Base Worldwide From 2015 To 2025 (in billions)
Source: Internet of Things for Architects, Perry Lea, Packt, 2018
Internet of Things Systems Sales & Growth Rates (2016-2021F CAGR)

Source: IC Insights, IC Market Drivers 2018 Update, June 2018
IC End-Use Systems Markets ($B) and Growth Rates

Source: IC Insights, IC Market Drivers Report 2018, December 2017

* Covers only the Internet connection portion of systems.
Interesting Data

• Enterprises that have adopted IoT
  – Decreased supply chain by more than 20%.
  – Increased productivity by 10% to 20%.
  – Reduced time to market by 20% to 50%.

• According to Cisco survey
  – 26% of companies consider their IoT initiative a success.

• According to Cognizant Center for the Future of Work
  – 60% of IoT executives said that IoT adds complexity to their IT infrastructure
Interesting Facts

• 96% of companies work with infrastructure, hosting and data processing facilitated by a major provider of cloud computing.

• During 2019 45% of the information generated by the IoT solutions will be processed, stored, analyzed, and reacted at the "edge" of the network.

• The "gadgets" will produce about 2.5 trillion bytes daily.

• To reduce the traffic of data in the network, companies must analyze the important IoT data in the "edge". Only the state should be sent to the cloud.
The Rise Of The Internet Of Things!

*Silicon Valley, CA, USA, Connected Things Map*

- Energy,  - Environment,  - Home,  - Transportation,…

Source: Thingful Ltd., 2017
The Rise Of The Internet Of Things!

What about us?

- Energy
- Environment
- Home
- Transportation

Source: Thingful Ltd., 2017
Internet of Things Value Chain

- **Smart Module**
  - SIM Card
  - Sensors
  - Embedded Chips
  - Aggregator
  - Transporter

- **Smart Object**
  - Vending Machine
  - Appliances
  - Meters
  - Car
  - Camera
  - Meters

- **Connectivity**
  - Network
  - Connectivity
  - Availability
  - Quality

- **Platform**
  - IoT Enabling Capabilities
  - Billing
  - Integration with 3rd party applications
  - Analytics

- **Software Customization**
  - Interfaces
  - Solution Build-up
  - Hardware
  - Back-end
  - Data Management

- **Applications**
  - Vertical solutions
  - Bundling of service
  - CRM & Billing
  - Customer Care

- **Customer**
  - Buys Services
  - Sells Services

Note, the above is not an exhaustive list of companies and any company may have play in more than one component of value chain

Copyright: Telecomcircle.com

Source: Internet of Things – Business Models, Mohit Agrawa, March 2017
85% of firms will implement or plan to implement IoT solutions

B2B applications of the technology are set to take off in 2019 (IIoT)

Industrial manufacturing, healthcare, retail, and utilities

Source: Forrester – Predictions 2019
IoT and analytics revenue

$600B

2017

235

2021

520

Systems integration

Data center and analytics

Network

Consumer devices

Things

Legacy embedded

Sources: Gartner; IDC; Harbor; Cisco; Ericsson; Machina Research; Ovum; Bain analysis; market participant interviews
What are the most significant barriers limiting your adoption of IoT/analytics solutions?

Percentage of respondents (top three barriers)

- Security: 40%
- IT/OT integration: 30%
- Unclear ROI: 30%
- Technical expertise: 25%
- Interoperability: 20%
- Data portability: 20%
- Vendor risk: 15%
- Transition risk: 15%
- Legal/regulatory issues: 10%
- Network constraints: 10%
- Vendor lock-in: 10%

Change since 2016:

- Security: Up
- IT/OT integration: Up
- Unclear ROI: Up
- Technical expertise: Up
- Interoperability: Up
- Data portability: Up
- Vendor risk: Up
- Transition risk: Up
- Legal/regulatory issues: Down
- Network constraints: Up
- Vendor lock-in: Down

Sources: Bain IoT customer survey, 2016 (n=533); Bain IoT customer survey, 2018 (n=627); market participant interviews
### Primary benefits

What would you consider the primary benefit of this production-scale IoT project?

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Fewer than 100 employees</th>
<th>100 or more employees</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved operational efficiency</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>Improved customer experience</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Improved customer data</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Improved business awareness</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Improved production output quality</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Improved employee efficiency</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Cost savings</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Base: 58 (fewer than 100 employees), 98 (100 or more employees) and 33 (manufacturing)

Data: The IoT Institute IoT Implementation Practices Survey, July/August 2017
Expected benefits (projects being researched)

What do you anticipate would be the primary benefit of this IoT project your company is actively researching?

- **Improved operational efficiency**: 32%
- **Improved customer experience**: 29%
- **Improved customer data**: 21%
- **Cost savings**: 7%
- **Improved business awareness**: 3%
- **Improved employee efficiency**: 3%
- **Other (please explain)**: 2%
- **Uncertain/not sure yet**: 3%

Base: 68
Data: The IoT Institute IoT Implementation Practices Survey, July/August 2017
How Important is the IoT to your Company’s Business?

Source: The Internet of Things: From Theory to Reality, Forbes Insights
Technology Initiatives that Are Important to my Company

- **Internet of Things**: 33%
- **Robotics**: 26%
- **Artificial intelligence/machine learning**: 20%
- **Nano-technologies**: 9%
- **3D printing**: 7%
- **Augmented reality**: 4%
- **Drones**: 1%

Source: The Internet of Things: From Theory to Reality, Forbes Insights
Which Best Describes the State of Development of the IoT in your Company

By region

By industry

Source: The Internet of Things: From Theory to Reality, Forbes Insights
How Important is the IoT to your Business Today, and How Important Will it be in the Future

Today
- Important: 64%
- Neutral: 36%
- Unimportant: 0%

In the future
- Important: 91%
- Neutral: 9%
- Unimportant: 0%

Source: The Internet of Things: From Theory to Reality, Forbes Insights
IoT Advancements

Installed IoT devices
(thousands of millions)

Economical impact in 2025: 4 - 11 billions dollars

McKinsey, 2014
IoT in Latin America

• Latin Americans have only two connected devices on average, compared to 11.5 connected devices for North Americans.

Number of IoT Connections in Latin America

Source: Statista 2018
Status of the IoT Adoption

Latin America Analysis

Source: IoT Snapshot – Logicalis, November 2018
Conclusion
Conclusion

• We have started a new era, a new industrial revolution.
• Technology has changed the way we communicate, work, drive, play sports, entertain ourselves, etc.
• New ways of manufacturing and providing services have arrived.
• Our country, like other countries in the region are behind in the adoption of these new technologies.
• Security, including that of people, is one of the great risks of this revolution.
Synopsys' 4th Annual MPSoC Design Contest

Enter for a Chance to Present at MPSoC 2019 in Hakone, Kanagawa, Japan on July 8 - July 12

Winner will receive an airline ticket, lodging and one free conference pass to present at MPSoC'19.
