

Study of the data exchange between PL and PS of Zynq-7000 devices

Rodrigo A. Melo, Bruno Valinoti (INTI) Marie Baly Amador, Luis G. García (ICTP) Andres Cicuttin, Maria Liz Crespo (ICTP)

ICTP

Motivation

FPGA SoC:

- In 2010 Actel (later Microsemi, now Microchip) introduced SmartFusion (ARM Cortex-M3).
- In 2011 Xilinx introduced Zynq-7000 and Altera (now Intel Programmable Solutions Group) some variants of Cyclone/Arria (2 x ARM Cortex-A9).

Previous attempts:

- Excalibur from Altera (ARM 9 and MIPS microcontrollers)
- Virtex-II and Virtex-4 Pro from Xilinx (embedded PowerPC from IBM)

The uP approach has a lowest integration level and lack of peripherals. The FPGA SoC solution integrates the software programmability of state of the art processors, capable of run an operating system, with a huge variety of general purpose and high speed peripherals, and several memory controllers, with the flexibility and scalability of programmable hardware into a single device.

Advanced Microcontroller Bus Architecture

An open standard for the connection and management of functional blocks in a SoC.

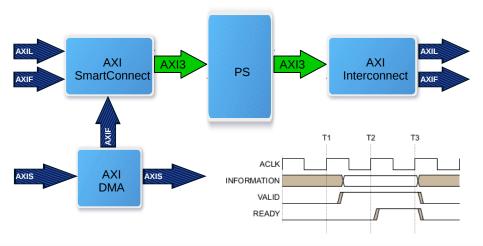
- AMBA 1 (1996): Advanced Peripheral Bus (APB)
- AMBA 2 (1999): AMBA High-performance Bus (AHB)
- AMBA 3 (2003): Advanced Extensible Interface (AXI3)
- AMBA 4 (2010): AXI4

Xilinx was one of the thirty-five companies that contributed with the AMBA 4 specification and an early adopter.

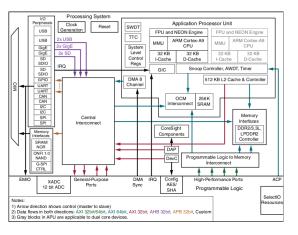
Source: ARM AMBA 4 Specification maximizes performance and power efficiency (press release)

AXI 3 vs 4

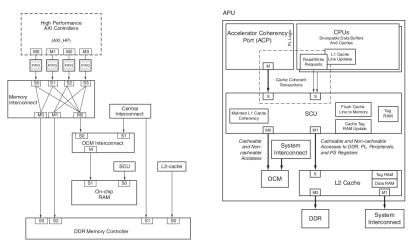
Masters and slaves in the PS are AXI 3, but hardware in the PL is suggested to be AXI 4.


The maximum burst length was extended from 16 to 256 beats (INCR type). Additionally, AXI 4 defines three interfaces:

- AXI4 (also known as AXI4-Full) for high-performance memory-mapped requirements.
- AXI4-Lite for simple, low-throughput memory-mapped communication (such as control and status registers).
- AXI4-Stream for high-speed streaming data (removes address phase and allows unlimited data burst size).


Vivado AXI Infrastructure

Zynq-7000 All Programmable SoC Overview


Source: Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

- Cortex-A9 MPCore (r3p0)
- 2 x 32b General Purpose masters (M_AXI_GP[1:0])
- 2 x 32b General Purpose slaves (S_AXI_GP[1:0])
- 4 x 32/64b High Performance slaves (S_AXI_HP[3:0])
- 1 x 64b Accelerator Coherency Port slave (S_AXI_ACP)

More about AXI ACP and HP

Source: Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

Data Movement Method Comparison Summary

Method	Benefits	Drawbacks	Suggested Uses	Estimated Throughput	
CPU Programmed I/O	 Simple Software Least PL Resources Simple PL Slaves 	Lowest Throughput	Control Functions	<25 MB/s	
PS DMAC	 Least PL Resources Medium Throughput Multiple Channels Simple PL Slaves 	 Somewhat complex DMA programming 	Limited PL Resource DMAs	600 MB/s	*
PL AXI_HP DMA	 Highest Throughput Multiple Interfaces Command/Data FIFOs 	 OCM/DDR access only More complex PL Master design 	 High Performance DMA for large datasets 	1,200 MB/s (per interface)	MB/s
PL AXI_ACP DMA	 Highest Throughput Lowest Latency Optional Cache Coherency 	Large burst might cause cache thrashing Shares CPU Interconnect bandwidth More complex PL Master design	 High Performance DMA for smaller, coherent datasets Medium granularity CPU offload 	1,200 MB/s	* PL Free * Data w Where is overhead
PL AXI_GP DMA	• Medium Throughput	 More complex PL Master design 	 PL to PS Control Functions PS I/O Peripheral Access 	600 MB/s	

 $MB/s = MHz * \frac{bits}{8}$

* PL Freq. is 150 MHz * Data width is 32/64 bits Where is the protocol overhead?

Source: Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

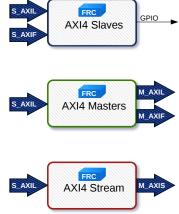
System-Level Address Map

Address Range	CPUs and ACP	AXI_HP	Other Bus Masters ⁽¹⁾	Notes
	OCM	осм	OCM	Address not filtered by SCU and OCM is mapped low
0000 0000 to 0003 FFFF ⁽²⁾	DDR	осм	OCM	Address filtered by SCU and OCM is mapped low
0000_0000 to 0003_FFFF (*)	DDR			Address filtered by SCU and OCM is not mapped low
				Address not filtered by SCU and OCM is not mapped low
0004 0000 to 0007 FFFF	DDR			Address filtered by SCU
0004_0000 to 0007_FFFF				Address not filtered by SCU
0008 0000 to 000F FFFF	DDR	DDR	DDR	Address filtered by SCU
0008_0000 to 000F_FFFF		DDR	DDR	Address not filtered by SCU ⁽³⁾
0010_0000 to 3FFF_FFFF	DDR	DDR	DDR	Accessible to all interconnect masters
4000_0000 to 7FFF_FFF	PL		PL	General Purpose Port #0 to the PL, M_AXI_GP0
8000_0000 to BFFF_FFF	PL		PL	General Purpose Port #1 to the PL, M_AXI_GP1
E000_0000 to E02F_FFFF	IOP		IOP	I/O Peripheral registers, see Table 4-6
E100_0000 to E5FF_FFFF	SMC		SMC	SMC Memories, see Table 4-5
F800_0000 to F800_0BFF	SLCR		SLCR	SLCR registers, see Table 4-3
F800_1000 to F880_FFFF	PS		PS	PS System registers, see Table 4-7
F890_0000 to F8F0_2FFF	CPU			CPU Private registers, see Table 4-4
FC00_0000 to FDFF_FFFF ⁽⁴⁾	Quad-SPI		Quad-SPI	Quad-SPI linear address for linear mode
FFFC 0000 to FFFF FFFF ⁽²⁾	OCM	OCM	OCM	OCM is mapped high
FFFC_0000 to FFFF_FFFF (*)				OCM is not mapped high

Source: Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

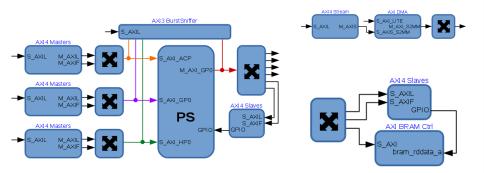
Zynq AXI Configurations

Page Navigator –	PS-PL Configuration	Summary Report						
Zynq Block Design	← Q							
PS-PL Configuration	Search: Q-							
Peripheral I/O Pins	Name	Select	Description					
renpretere contra	> General							
MIO Configuration	 AXI Non Secure Enablement 	0 ~	Enable AXI Non Secure Transaction					
Clock Configuration	V GP Master AXI Interface							
Clock Configuration	> M AXI GP0 interface	2	Enables General purpose AXI master interface 0					
DDR Configuration	> M AXI GP1 interface		Enables General purpose AXI master interface 1					
SMC Timing Calculation	 GP Slave AXI Interface 							
sinc mining calculation	S AXI GP0 interface	2	Enables General purpose 32-bit AXI Slave interface 0					
Interrupts	S AXI GP1 interface		Enables General purpose 32-bit AXI Slave interface 1					
	V HP Slave AXI Interface							
	S AXI HP0 interface	2	Enables AXI high performance slave interface 0					
	S AXI HPO DATA WIDTH	64 V	Allows HP0 to be used in 32/64 bit data width mode					
	> S AXI HP1 interface		Enables AXI high performance slave interface 1					
	> S AXI HP2 interface		Enables AXI high performance slave interface 2					
	> S AXI HP3 interface		Enables AXI high performance slave interface 3					
	ACP Slave AXI Interface							
	S AXI ACP interface	2	Enables AXI coherent 64-bit slave interface					
	Tie off AxUSER	1	Tie off AxUSER signals to high, enabling coherency when all					
	> DMA Controller							
	> PS-PL Cross Trigger interface		Enables PL cross trigger signals to PS and vice-versa					

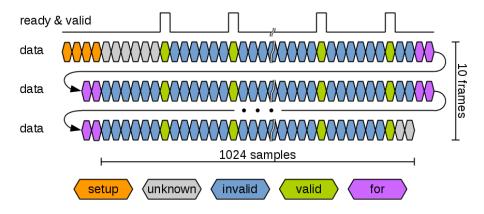

To enable cache coherency with ACP, the AXI signals AxCACHE must be **XX11** and AxUSER must have all its bits tie high.

Developed IPs

AXI3 Burst Sniffer


SLOT0-3 are AXI3 interfaces in monitor mode, which have only INPUT ports.

ces	Proj	ect Summary × Package IP -	AXI3_BurstSniffer ×			
Sources	Pa	ckaging Steps	Ports and Interfaces			
s.	4	Identification	Q ¥ € + ⊕	C		
Bus Interface Properties		Compatibility	Name	Interface Mode		
Pro	5	File Groups	> 🕀 S_AXIL	slave		
ace	 File Groups 	The oroups	> 🕕 SLOT_0	monitor		
terf	 Customization Parameters 	> 🕀 SLOT_1	monitor			
с s		5 J J J J	> 🕀 SLOT_2	monitor		
	•	Ports and Interfaces	> 🕀 SLOT_3	monitor		
≞	4	Addressing and Memory	✓			
			> 🚯 aresetn	slave		
	1	Customization GUI	> 🕀 aclk	slave		
		Review and Package				

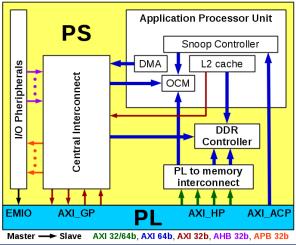

Block Designs

Cycles measurement in the PS

Cycles measurement in the PS

```
int data[ROWS][COLS] __attribute__ ((aligned (32)));
...
int row, col;
```

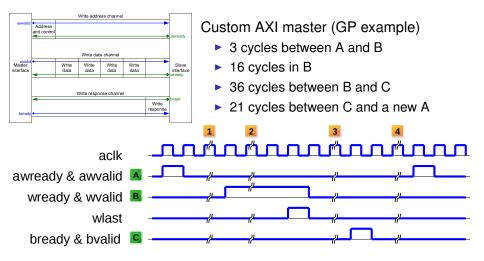
pl_cycles = data[row][COLS-1]-data[row][0]


```
#include "xtime_l.h"
...
XTime tStart[ROWS], tEnd[ROWS];
...
XTime_GetTime(&tStart[row]);
...
// do something to be measured here
XTime_GetTime(&tEnd[row]);
...
ps_cycles = 2 * (tEnd[0]-tStart[0]);
```

$$MB/s = rac{FREQUENCY * SAMPLES * BYTES}{CYCLES}$$

Zynq Interfaces Summary

Measured cycles


Test Case				tween D	Data	Per Frame		
Interface	Variant	Burst	min	typ	max	PS (MB/s)	PL (MB/s)	PS/PL
EMIO	GPIO (XGpioPs_Read)	No	20	21	29	96954 (27.46)	22358 (27.48)	4.33
EMIO	GPIO (Xil_In32)	No	20	20	31	92502 (28.78)	21330 (28.80)	4.33
M_AXI_GP	AXI Lite (Xil_In32)	No	28	28	33	124386 (21.40)	28689 (21.41)	4.33
M_AXI_GP	AXI Full (Xil_In32)	No	24	24	26	106588 (24.97)	24581 (24.99)	4.33
M_AXI_GP	AXI Lite (memcpy)	No	19	20	31	90973 (29.26)	20974 (29.29)	4.33
M_AXI_GP	AXI Full (memcpy)	No	15	16	25	73336 (36.30)	16910 (36.33)	4.33
S_AXI_GP	AXI Lite	No	44	44	45	200229 (13.29)	46075 (13.33)	4.34
S_AXI_HP	AXI Lite	No	36	36	37	160386 (16.59)	36865 (16.66)	4.35
S_AXI_ACP	AXI Lite	No	36	36	36	160389 (16.59)	36864 (16.66)	4.35
S_AXI_GP	AXI Full	Yes	1	4	59	21962 (121.22)	4868 (126.21)	4.51
S_AXI_HP	AXI Full	Yes	1	3	40	16669 (159.72)	3675 (167.18)	4.53
S_AXI_ACP	AXI Full	Yes	1	3	37	15506 (171.70)	3409 (180.22)	4.54
M_AXI_GP	AXI Full with PS DMA	Yes	1	1	4	11425 (233.3)	1213 (506.51)	9.41
S_AXI_GP	AXI Full with AXI DMA	Yes	1	1	571	7245 (367.48)	1654 (371.46)	4.38
S_AXI_HP	AXI Full with AXI DMA	Yes	1	1	381	6048 (440.21)	1397 (439.79)	4.32
S_AXI_ACP	AXI Full with AXI DMA	Yes	1	1	422	6154 (432.62)	1418 (433.28)	4.33

The ideal PS/PL relation is 650 MHz/150 MHz = 4.33

Custom AXI master vs AXI DMA

Custom AXI Master improvment

	Between Data			Per Frame			
Interface	Variant	min	typ	max	PS (MB/s)	PL (MB/s)	PS/PL
S_AXI_GP	AXI Lite	44	44	45	200229 (13.29)	46075 (13.33)	4.34
S_AXI_HP	AXI Lite	36	36	37	160386 (16.59)	36865 (16.66)	4.35
S_AXI_ACP	AXI Lite	36	36	36	160389 (16.59)	36864 (16.66)	4.35
S_AXI_GP	AXI Full	1	4	59	21962 (121.22)	4868 (126.21)	4.51
S_AXI_HP	AXI Full	1	3	40	16669 (159.72)	3675 (167.18)	4.53
S_AXI_ACP	AXI Full	1	3	37	15506 (171.70)	3409 (180.22)	4.54
S_AXI_GP	AXI Full with AXI DMA	1	1	571	7245 (367.48)	1654 (371.46)	4.38
S_AXI_HP	AXI Full with AXI DMA	1	1	381	6048 (440.21)	1397 (439.79)	4.32
S_AXI_ACP	AXI Full with AXI DMA	1	1	422	6154 (432.62)	1418 (433.28)	4.33

 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

Test Case		Be	tween D	Data	Per Frame			
Interface	Variant	min	typ max		PS	PL	PS/PL	
S_AXI_GP	AXI Lite	3	3	4	14382 (185.12 MB/s)	3187 (192.78 MB/s)	4.51	
S_AXI_HP	AXI Lite	3	3	3	13952 (190.82 MB/s)	3072 (200. 0 MB/s)	4.54	
S_AXI_ACP	AXI Lite	3	5	8	26769 (99.45 MB/s)	5963 (103. 3 MB/s)	4.48	
S_AXI_GP	AXI Full	1	1	5	6677 (398.74 MB/s)	1406 (436.98 MB/s)	4.74	
S_AXI_HP	AXI Full	1	1	4	6456 (412.39 MB/s)	1342 (457.82 MB/s)	4.81	
S_AXI_ACP	AXI Full	1	1	5	6684 (398.32 MB/s)	1406 (436.98 MB/s)	4.75	

Conclusions

- If burst transactions will not be used (neither DMA or cache) use AXI Lite interfaces (they are simpler and less PL resources are consumed).
- ► The AXI interfaces provided by the IP packager could/must be improved:
 - AXI Lite interfaces consume an extra cycle per operation.
 - AXI Full slave do not work with burst.
 - The address phase of AXI Full master can be changed to be at same time that TLAST (is what AXI DMA does).
 - The write response channel can be ignored to improve the data rate (is what AXI DMA does but IS NOT COMPLIANT WITH THE AMBA AXI SPEC).
- When 32-bit data is used in 64-bit interfaces, the burst transactions involves 64-bit transfer with one cycle between them.
- The PS DMA driver seems that could be improved to obtain very high data rates.
- The main disadvantage in GP interfaces is the 32-bit data width, due that slightly lower data rates are observed compared with HP/ACP.

in

INTI-CMNB-FPGA

Rodrigo A. Melo

Attribution-ShareAlike 4.0 International rmelo@inti.gob.ar http://creativecommons.org/licenses/ rodrigoalejandromelo

- @rodrigomelo9ok
- rodrigomelo9

Bruno Valinoti

valinoti@inti.gob.ar

in bruno-valinoti

by-sa/4.0/

Thanks!