Design for Portability of Reconfigurable Instrumentation Based on Programmable Systems-on-Chip

Luis Garcia, Andres Cicuttin, Maria Liz Crespo, Kasun Sameera Manatunga, (ICTP,Italy) Rodrigo Melo, Bruno Valinotti, (INTI, Argentina) Stefano Levorato (INFN, Italy)

Andres Cicuttin ICTP – MLAB

Multidisciplinary Laboratory of The Abdus Salam International Centre for Theoretical Physics

Trieste, Italy

Reconfigurable Virtual Instrumentation

Reconfigurable Virtual Instrumentation

Oscilloscope

Hardware modularity and porting across different platforms

A. Cicuttin, ICTP. SPL2019

Portability among different FMC Carriers of instrumentation based on dedicated hardware modules

A possible FPGA Global Architecture for RVI

A. Cicuttin, ICTP. SPL2019

Global Architecture of a distributed instrumentation

Data movement through distributed instrumentation

Reconfigurable Instrumentation based on SoC FPGA Global Architecture

Reconfigurable Virtual Instrumentation Based on a single SoC FPGA Typical Global Architecture

Reconfigurable Distributed Instrumentation Based on multiple SoC FPGA

A block view of the **C**ommunication **B**lock and memory mapping of the **CB** ports

ComBlock: Memory mapping on the uP side, and its connections with functional blocks implemented in the FPGA.

A possible logical utilization of reserved registers for safe data transfer through TDP RAM

Asynchronous timing diagram of a flags-based protocol for safe data transmission through the TDPRAM of the CB

Top level schematic: ComBlock and its connections

FPGA-Subsystem

Custom connections with the FPGA-subsystem

Top level schematic: ComBlock and its connections

Custom connections with the FPGA-subsystem

Configuration wizard window for the ComBlock

•	Re-customize IP		(\mathbf{x})
comblock_v1.0 (1.0)			4
🗊 Documentation 🛛 📄 IP Location			
Show disabled ports	Component Name comblock_0		
+ 500_4X1 + 501_4X1 + 502_4X1	Regs Data Width	32	[1 - 32]
reg0_i(31:0) reg1_i(31:0)	ENABLE DRAM		
reg2_i[31:0] reg0_o[31:0] reg3_i[31:0] reg1_o[31:0] reg4_i[31:0] reg2_o[31:0]	DRAM Data Width	32 🛞	[1 - 32]
reg5_i(31:0) reg3_o(31:0) reg6_i(31:0) reg4_o(31:0) reg7_i(31:0) reg5_o(31:0)	DRAM Addr Width	16	[1 - 32]
reg8_i[31:0] reg5_o[31:0] reg9_i[31:0] reg7_o[31:0] reg7_i[31:0] reg7_o[31:0]	Shall Depth	0	
– ram_we_i reg9_o(31:0) ■ ■ ram_addr_i(15:0) ram_data_o(31:0) ■ ■ ram_data_i(31:0) fifo_full_o –	ENABLE FIFO PROC TO FPGA		
– fifo_dk_i fifo_afull_o – – fifo_clear_i fifo_overflow_o – – fifo_we i fifo_dete offición –	FIFO Data Width	16 🛞	[1 - 32]
fifo_deta_(15:0) fifo_empty_o - fifo_re_i fifo_empty_o -	FIFO Depth	1024 🛞	
− s00_axi_aclk fifo_underflow_o − •© s00_axi_aresetn ==01_aci_aclk	FIFO Almost Empty Offset	1	
sol_axi_eck sol_axi_eresetn sol_axi_eresetn	FIFO Almost Full Offset	1	
			OK Cancel

(Vivado System Edition)

Communication between the FPGA and uP subsystems

It can be implemented by mean of three different hierarchical levels:

1. Physical

Allows a simple utilization of the resources of the CB as storage elements.

2. Logical

Includes a basic asynchronous logic protocol for a safe utilization of the ComBlock. It requires some reserved areas in the TDPRAM and some reserved registers.

3. Systemic

Implements a high level protocol based on a set of complex instructions for Direct Memory Access (DMA). It provides transparent access from any domain to all resources mapped in a global memory mapping, including those that are not immediately accessible but that are directly accessible from the other domain. It requires a DMA machine in the FPGA, and a corresponding software routine in the uP.

Each level corresponds to a communication layer. Each layer relays on the services offered by the immediate layer below, and provides services that can be used by the layer immediately above.

Resource utilization of the CB in different Devices

•RESOURCE UTILIZATION OF THE CB IN XILINXFPGAS

•RESOURCE UTILIZATION OF THE CB IN ALTERA FPGAS

Family	Name	Slice LUTs	Slice Registers	F7 Muxes	F8 Muxes	Block RAM (kBytes)	Family	Name	ALMs	Logic Registers	Block RAM (kBytes)
Zynq-7000	xc7z020	726	816	128	64	290.25	Cyclone V	5CSEMA5F31C6	764	563	290.25
Spartan-7	xc7s100	726	816	128	64	290.25	Cyclone 10 LP	10CL006YU256A7G	1170	559	290.25
Artix-7	xc7a200	726	816	128	64	290.25	Cyclone IV GX	EP4CGX15BF14A7	1171	559	290.25
Kintex UltraScale+	xcku15p	854	816	128	64	290.25	Cyclone IV E	EP4CE6E22A7	1170	559	290.25
Virtex UltraScale+	xcvu13p	854	816	128	64	290.25					

Resource usage of a high-speed data acquisition system without and with the communication block

	Name	Wit	hout Commun	ication Blo	ock	With Communication Block			
		FPGA_ Subsystem	uP_ Subsystem	Others	Total	FPGA_ Subsystem	uP_ Subsystem	Communication _Block	Total
1	Slice LUTs	187	960	6691	7838 (14.73%)	186	1466	834	2486 (4.67%)
	Slice Registers	264	1244	12696	14204 (13.35%)	264	1957	884	3105 (2.92%)
	F7 Muxes	0	62	0	6 <mark>2</mark> (0.23%)	0	62	128	190 (0.71%)
	F8 Muxes	0	0	0	0 (0%)	0	0	64	64 (0.48%)
	Block RAM Tile	0	0	66.5	66.5 (47.5%)	0	0	65	65 (46.43%)

Conclusions

- 1. The proposed *Communication Block is* a general purpose and reusable IP which completely absorbs the complexities of the *SoC Interconnection Bus* in modern SoC FPGA devices.
- 2. FPGA and uP subsystems can efficiently communicate through a *ComBlock* without any significant loss in performance and without any penalty in resources utilization.
- 3. Migration of complex systems among different SoC FPGA families and vendors is easier when based on *ComBlocks* since it essentially requires the porting of the *ComBlock* only.
- 4. Most of the uP embedded software and FPGA subsystem designs can be ported with minimal effort, and with facilitated debugging and optimization.
- 5. Since each subsystem deals with the other subsystem by reading and writing in the memory locations of the *ComBlock*, this block provides an abstract view of one subsystem to the other interacting subsystem.
- 6. The use of a ComBlock imposes a structured design methodology by mean of an explicit separation of the work in the uP and FPGA domains.
- 7. The implicit *ComBlock* strategy could simplify concrete Hardware/Software partitioning and implementation of complex cooperative activities.

Thank you for your attention!