
Flexible Software to Hardware
migration methodology for FPGA

design and verification.

Matias Trapaglia1, Ricardo Cayssials2,3, Lorenzo De

Pasquale2, Edgardo Ferro3

1CONICET,
2UTN – FRBB,

Department of Electronics Engineering,3Universidad Nacional del Sur

Bahía Blanca - Argentina

Goals

 To propose a Software to Hardware migration

methodology for design, testing and

verification

Introduction

 In traditional hardware design methodologies,

updating and upgrading hardware

functionalities involve expenses difficult to

justify in most of the modern developments.

 Waterfall model

Requirements

Specification

Design

Implementation

Verification

Maintenance

Introduction

 FPGA reconfiguration feature allows adopting

software techniques to shorten production

cycles, time-to-market metrics and increase the

life cycle of the design.

 Prototype model
Requirements Quick design Prototype

Evaluation Requirements

refinement

Implementation Verification Maintenance

Introduction

 Software development based on Agile

approaches allows flexible and cooperative

development processes adequate to the

complexity of modern designs. Several

platforms, software languages, and tools were

proposed to support these software

methodologies.

Co-modelling / co-design

 Co-modelling lets developers investigate and

compare systematically different software and

hardware partitions to meet systems’

constraints earlier in the design process when

integration problems are easier and cheaper to

resolve.

 The complex interdependencies among

software and hardware components aren’t

often adequately reflected by the functional

requirements of an integrated

software/hardware system.

Cocotb

 Cocotb is an open source CO-routine-based

CO-simulation TestBench environment for

verifying VHDL and Verilog RTL using Python

[6].

 Cocotb helps to interface different hardware

simulation tools with a Python environment

where the testbench might be programmed.

DUTILS

 DUTILS [7] extends Cocotb’s functionalities by

wrapping the simulation in a class, making the

use of the simulated component inside a

routine possible.

 This class also allows controlling the execution

flow, with conditional stops and step by step

debugging, useful in the design stage.

Migration Methodology

 Step 1: Software modeling stage

A model-in-the-loop methodology is used in the early

stages of the development process to outstretch the

main component and interfaces of the system. Further

refinements may detail the method, properties and

requirements of each one of the components in the

system, usually modeled as object-oriented classes.

Migration Methodology

 Step 2: Partition stage

The set of system components to be implemented in

hardware has to be defined.

HW/SW implementation of a function is much easier,

without the need of changing the software structure

Migration Methodology

 Step 3: Hardware components description

Hardware components should be described through a

hardware description language, synthesizable for

FPGA devices.

With DUTILS flow control, the behavior of the DUT can

be traced and compared with the software model;

watching the internal registers of the hardware

component allows incremental programming from

basic functionality to the full-featured component.

Migration Methodology

 Step 4: Software routines integration with

DUTILS framework

The DUTILS model is moved from a stand-alone class

inside testing scripts, to form part of an interconnected

project, consisting of software/hardware components.

With the built-in methods, is an easy task. Only a few

additional functions have to be created to adjust

software variables to the hardware signals timing.

Migration Methodology

 Step 5: Hardware / Software interface

specification

The hardware component ports and signals are

retrieved by the DUTILS framework into a Python

dictionary through Cocotb. In this way, no software

code modification is needed; the same codification is

useful for the simulation as well as for the final

implementation, implying a reduction in development

times.

Migration Methodology

 Step 6: Platform deployment

If the project platform is a SOC, after the verification

succeeded the hardware part can be automatically

compiled and configured into the FPGA logic, and the

software stored in a memory that the HPS has access

to. The communication between both is also

automated. This way a final implementation is

achieved, making possible to obtain the real metrics.

Process Development flow

SW code

Product
Specifications

1
Software
Modeling

Steps

2
HW/SW

partitioning

3

HDL Files

SW code to
migrate

Simulation

Final HW/Sw
Implementation

4

Components Classes

DUTILS 5

SoC
(FPGA +

HPS)

Case Study: Fast Fourier transform

FFT implementation

 FFT is a recursive algorithm implemented

iteratively in [12].

 The hardware architecture was verified in the

DUTILS framework for 16, 32, 64, 128, 256

and 512 samples.

 Data width were modified from 8 to 12 integer

bits and 3 to 9 decimal bits.

CS: System design

– signal generation class: this class produces an array

of the sampled values according to a certain function.

– FFT computation class: returns a complex array of the

frequency components. This class is the wrapper of

both: (1) the Python imported FFT library and (2) the

hardware implementation of the FFT algorithm.

– Control and monitoring class: this class is in charge of

transferring the data values produced by the signal

generation class to the FFT computation class and

check and visualize the results from the FFT

computation class.

Verification: data generation

 Python environment offers a simple way to

produce complex analysis.
import numpy as np

import matplotlib.pyplot as plt

import scipy.fftpack

N = 256

signal = np.zeros(N + 1)

for k in range(1, N + 1):

 x = np.linspace(-np.pi, np.pi, N + 1)

 signal = signal + np.cos(k * x)

plt.plot(np.linspace(0, N, N+1), signal)

plt.xlabel('Sample')

plt.ylabel('Value')

plt.show()

Verification: data verification

FFT_soft = scipy.fftpack.fft(signal)

DUT_FFT = FFT_hard(signal)

error = np.absolute(FFT_soft - DUT_FFT)

plt.plot(np.linspace(0, N, N + 1),error)

plt.xlabel('Sample')

plt.ylabel('Error')

plt.axis('tight')

plt.show()

Verification: SF/HW error

 For white noise:

FFT hardware implementation

 A concurrent FFT implementation for 512

samples of 16 bits may take around 10,000

logic elements for a 10MHz sampling time in a

Cyclone IV E Intel FPGA device.

Methodology Analisys

 The FFT transform proposed as a case study

was easily implemented and tested with data

structures supported by Python language.

 Migration from Python to HDL could be

performed gradually, verifying automatically the

consistency between Python variables and

hardware signals.

 Wide range of data structures in Python

reduces the complexity of producing efficient

testbenches.

System implementation

Conclusions

 Flexible hardware design techniques has to be proposed.

 The DUTILS framework helps to achieve a fast migration from

software to hardware.

 Migration methodology allows using the same modeling

environment for software developments, hardware and software

verification, and final deployment.

 A digital signal processing FFT was proposed to highlight the

flexibility of the migration methodology to develop and verify

complex algorithms in digital hardware.

 A complex iterative algorithm with an array of complex values was

easily migrated and verified using the highly efficient data

structures and imported functions of Python

Thanks

 Thanks for your attention.

 rcayssials@frbb.utn.edu.ar

