
PROCEEDINGS

San Luis - Argentina
March, 2023

julio
Editors

Juan Pablo Soto Barrera
Alejandro Nunez Manquez
Ivana Trento
Astri Andrada Tivani

Welcome
The SPL2023 Organizing Committee, gives you welcome to the XI Southern Programmable Logic
Conference in San Luis, Argentina.

The conference is organized by Universidad Nacional de San Luis, Argentina, and we aim to provide
a high-level international forum for researchers and engineers to discuss recent advances, new
techniques and applications in the field of reconfigurable logic technology. The XI edition continues
the tradition of the previous one to become the meeting point for the worldwide community in the
area.

SPL2023 topics include Embedded Processors and IP Cores, System-on-Chip, Computer Arithmetic,
Image Processing and Vision, FPGA Architectures for Specific Applications, Fault Tolerance, Test &
Verification, High-Performance Computing, Design Methodologies and Tools, High-Level
Abstraction, Reconfigurable Computing, and Hardware/software co-design.

We would like to make a special acknowledgement of the contribution of our distinguished keynote
speakers, the session organizers, the reviewers and all the authors. Your participation, and the spirit in
which you undertake it, makes SPL2023 more successful.

Finally, we sincerely wish you a pleasant stay and a fantastic memory of San Luis.

Sincerely,
Operating Committee

julio

Technical sponsorship

Institutional sporsonsing

Operating committee

 General Chair

 Julio Dondo Gazzano - Universidad Naciona de San Luis (UNSL, Argentina)

 Program Co-Chairs

 Carlos Vaderrama Sakuyama - Université de Mons, Department of Electronics and
Microelectronics (SEMI, Belgica)

 Fernando Rincón Calle - Universidad de Castilla-La Mancha (UCLM, España)

 Proceedings Co-Chairs

 Elias Todorovich - Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN,
Argentina)

 Juan Pablo Soto Barrera - Universidad de Sonora (UNISON, Mexico)

 Designer Forum Chair

 Cristian Sisterna - Universidad Nacional de San Juan (UNSJ, Argentina)

 Financial Co-Chairs

 Ricardo Cayssials - Universidad Tecnologica Nacional Bahia Blanca (UTN BHI, Argentina)

 Cristian Falco - Universidad Nacional de San Luis (UNSL, Argentina)

 International Relationship Chair

 Gustavo Suter - Universidad Autónoma de Madrid (UAM, Spain)

 Local Chair

 Carlos Federico Sosa Paez - Universidad Nacional de San Luis (UNSL, Argentina)

 Local Committee

 Diego Costa - Universidad Nacional de San Luis (UNSL, Argentina)

 Roberto Kiessling - Universidad Nacional de San Luis (UNSL, Argentina)

 Publicity Chairs

 Rodrigo Alejandro Melo - indie Semiconductor (Argentina)

 Ivana Trento - Universidad Nacional de San Luis (UNSL, Argentina)

XI Southern Conference on Programmable Logic
SPL2023

Table of Contents
Full Papers

Hardware Acceleration of a CNN-based Automatic Modulation Classifier...............……..........1
Sravanth Chebrolu, Srinivas Boppu and Linga Reddy Cenkeramaddi.

FPGA Implementation of Staggered Cellular Automata for Wave Propagation Simulation.......7
Gustavo O. Pereira, Santiago Guzman-Anaya, Henrique G. Moura and Daniel M. Muñoz

Streamlining FPGA Circuit Design and Verification with Python and py4hw........................14
David Castells-Rufas, Gemma Rotger and David Novo.

Open-source SoC-FPGA Platform for Signal Processing...21
Matías Javier Oliva, Pablo Andrés García, Enrique Mario Spinelli and Alejandro Luis

Veiga

Turbo-Código seguro mediante Interleaver aleatorio variable en el tiempo............................27
Raúl Eduardo Lopresti, Maximiliano Antonelli, Jorge Castiñeira Moreira y Luciana De

Micco

Evaluation of dense and sparse linear algebra kernels in FPGAs.......................................31
Federico Favaro, Ernesto Dufrechou, Juan Oliver and Pablo Ezzatti.

High-Speed Textural Image Features Extraction using FPGA..37
Jeremías Gaia, Emanuel Trabes, Eugenio Orosco, Francisco Rossomando and Carlos

Soria.

Multi-stage multirate filterbank for FPGA resource optimization......................................43
L. H. Arnaldi

Real-time noise reduction through independent channel averaging for real-time biomedical signal
acquisition…………………………………………………………………………………………...49

Federico Guerrero, Matías Oliva and Enrique Spinelli

Diseño en VHDL del algoritmo SOGI PLL SRF usando síntesis de alto nivel (HLS)...............55
Alejandro Núñez Manquez, Matín Murdocca, Victor Yelpo e Ivana Trento

Generador de fallas para pruebas de algoritmos de sincronización con la red eléctrica
monofásica..61

Alejandro Núñez Manquez, Julio Dondo Gazzano, Estrella Gómez Orozco y Carlos Sosa
Paez.

Acceleration of a Dense monocular Localization System using FPGAs................................67
Emanuel Trabes, Jeremías Gaia and Gustavo Sutter

Hardware Acceleration of a CNN-based Automatic
Modulation Classifier

Sravanth Chebrolu ∗, Srinivas Boppu∗, Linga Reddy Cenkeramaddi†
cs21@iitbbs.ac.in, srinivas@iitbbs.ac.in, linga.cenkeramaddi@uia.no

∗School of Electrical Sciences, Indian Institute of Technology Bhubaneswar (IITBBS), India
†Department of Information and Communication Technology, University of Agder, Norway

Abstract—Automatic modulation classification (AMC) has
found its place in numerous applications, ranging from cognitive
radio and adaptive communication to electronic reconnaissance
and spectrum interference detection. Several attempts have been
made to develop a high-accuracy modulation classifier using ma-
chine learning based convolutional neural networks (CNNs). This
paper considers one such model, which uses a fixed boundary
range empirical wavelet transform and deep CNN, and accelerates
the model on the ZCU104 FPGA board to achieve fast classifi-
cation times. The proposed accelerator can achieve a maximum
classification accuracy of 96% for +8 dB signal-to-noise ratio
(SNR) radio signals. Compared to similar works, the accelera-
tor performs reasonably well for low SNR ratios (≤ +6 dB).
Furthermore, the model is implemented on an edge CPU device
(Raspberry Pi), and our accelerator is 50× faster than the CPU
implementation. Our design achieves a reasonable throughput of
1.8K classifications/sec and a classification time of 550µs per
sample.

Index Terms—Modulation Classification, Hardware Accelera-
tion, Deep Learning, Convolutional Neural Networks, Vitis AI

I. INTRODUCTION

There have been significant advances in wireless communi-
cation technologies and their standards recently. Understand-
ing the radio spectrum in an autonomous manner plays an
important role in numerous applications, such as electronic
warfare, threat analysis in military scenarios, dynamic spec-
trum access, and spectrum interference detection [1], [2]. For
instance, automatically identifying the modulation types of
received signals allow the receiver to demodulate the signal;
thus, the development of an efficient algorithm for modula-
tion identification, also called Automatic modulation classifier
(AMC), is the priority in many software-defined radio-based
communications [3]. AMCs have been extensively studied in
recent years [3], [4], and several Deep Learning (DL) based
techniques have emerged with huge Convolutional Neural Net-
work (CNN) layers that have shown remarkable accuracy for
automatically classifying modulated radio signals [5]. While
these networks offer good accuracy, CNN-based networks are
intrinsically slow due to the high computational complexity of
the convolution operation. Since achieving fast classification
times is crucial in several wireless communications applica-
tions, it is challenging to implement CNN-based AMCs for
practical purposes. The complexity of the convolution operation
can be greatly reduced if it is performed in parallel. Therefore,
hardware accelerators based on FPGAs perform much better
than traditional CPUs for CNN inference due to their parallel

processing capabilities [6], [7]. Furthermore, with the recent
advancements in FPGA technologies, FPGAs also emerged as
potential candidates for AI hardware acceleration. Extensive
research in this field has led to many new technologies in this
space and frameworks such as Vitis AI have emerged, which
enable AI inference acceleration on Xilinx FPGA platforms.

Vitis AI supports deep learning frameworks like TensorFlow
and offers a suite of tools and APIs to prune, quantize, optimize,
and compile pre-trained models to achieve the highest AI
inference performance on Xilinx FPGAs [8]. In this paper, we
propose a CNN-based hardware accelerator for AMC. We use
the Vitis AI Development Kit, which relies on the Deep learning
Processing Unit (DPU) at its core to accelerate inference for
CNN-based models. The main contributions of this paper are

• Training and deploying a CNN-based AMC on the
ZCU104.

• A model that achieves high classification accuracy even
for low SNRs (≤ +6 dB).

• Speed and accuracy comparison of the FPGA implemen-
tation against a CPU-based edge device (Raspberry Pi).

The rest of the paper is organized as follows. Section II de-
scribes the related work. The problem statement is given in
Section III and data set generation and training details are
discussed in Section IV. Section V and Section VI discuss the
DPU and the Vitis AI development flow. Finally, the results of
our hardware implementation and conclusions are discussed in
Section VII and Section VIII, respectively.

II. RELATED WORK

Several ML-based techniques have been proposed for AMCs
using radio signals in the last few years. For instance, In [10],
Tridgell et al. proposed a real-time implementation on ZCU111
using the radioML data set for SNRs ≥ +6 dB and achieved an
accuracy of nearly 80% in the best case scenario (+30 dB SNR),
a throughput of 488K classifications/s, and a classification la-
tency of 8µs. Similarly, in [5], Kumar et al. have also proposed
a real-time implementation on the ZCU111 RFSoC—achieving
a 94.46% maximum accuracy on the 24-class RadioML data
set at +30 dB SNR while delivering a high throughput of 527K
classifications/s, and a classification latency of just 7.5µs. In
[11], the authors have implemented a classifier for two modula-
tion types, BPSK and QPSK, and achieved a classification ac-
curacy of 100% for both at 10 dB SNR with a fast classification
time of 42ns. The definition of time to classify differs across

julio
XI Southern Conference on Programmable Logic SPL2023 1

input conv2conv1 conv4conv3

(16, 1024, 8)

(8, 509, 16)

(4, 251, 16)

(4, 251, 32)

(8, 509, 8)

(2, 122, 64)

(2, 58, 64)

(2, 58, 128)

conv5

Input Layer ReLU activation
layer
Max Pooling LayerConvolutional

Layer
Batch Normalization Fully Connected Layer

Softmax Layer

output

(2, 122, 32)

Crossentropy Layer

Fig. 1: Illustration of the CNN architecture used [9].

papers, with real-time implementations using latency to denote
the time taken to classify the signal once the data is received.
In [6], the authors achieved approximately 90% accuracy when
the SNR was ≥ +4 dB and the classification time was 20µs
for four modulation schemes BPSK, QPSK, 8-PSK, and 16-
QAM. In [7], Soltani et al. have also worked on a real-time RF
signal classification using Zynq UltraScale+ XCZU9EG FPGA
and achieved a classification time of 24µs, with an average
accuracy of 94% over six modulation schemes; however, the
SNRs used were not reported. In [12], Liu et al. also used a
CNN model trained on the radio ML data set to achieve an
accuracy of 72.5% for 0 dB SNR with a classification time of
4ms. Our proposed hardware classifier implements the CNN
architecture proposed by Yakkati et al. [9], with ReLU activa-
tions instead of tanh, in which a total of 9 modulation schemes
[BPSK, QPSK, 64-QAM, PAM4, GFSK, CPFSK, B-FM, DSB-
AM, SSB-AM] are used. The accelerator is implemented on
the ZCU104 using Xilinx’s DPU IP, a programmable engine
dedicated to accelerating convolutional neural networks. Our
classifier achieved the best classification accuracy of 96%,
with a throughput of 1.8K classifications/s and a classification
time of 550µs. It is to be noted that the classification time
includes the time delta to transfer the data from memory on the
board through the on-chip ARM processor to the FPGA. The
proposed work outshines previous implementations by a good
margin even for low SNR radio signals, and achieves a modest
classification speed.

III. PROBLEM STATEMENT

In the past, several AMCs were implemented using deep
convolutional neural networks, and one such implementation
which uses Fixed Boundary Range Empirical Wavelet Trans-
form (FBREWT) and deep CNN is shown in Fig. 1. The
CNN model comprises of five convolution layers, six batch-
normalization layers, four max-pooling layers, one fully con-

nected layer, as presented in Fig. 1. The input layer accepts
pre-processed data which takes the shape of 16×1024 matrix,
and the output layer is a 9×1 vector, which corresponds to the
number of modulation schemes used for classification. Such
deep neural networks can be deployed on edge computing
devices like the Raspberry Pi. However, CNNs heavily depend
on the convolution operation, which can be tedious to evaluate
on pure CPUs due to their sequential nature of execution. When
evaluated in parallel, this operation can be significantly speed
up; therefore, FPGAs are among the best hardware platforms
for implementing CNNs. Furthermore, modulation classifiers
have not been implemented that fare well for low SNR radio
signals. This work proposes a method to implement the CNN-
based classifier that achieves high accuracy even for low SNR
radio signals. The proposed method uses the Vitis AI tools
provided by Xilinx to port the CNN model on Zynq FPGA
to achieve hardware acceleration. Finally, we compare the
performance metrics of the inference times with a raspberry pi
4B, which is an edge device with an ARM CPU.

IV. DATA SET, PREPROCESSING AND TRAINING

Table I summarizes the modulation schemes to be classi-
fied and the SNRs used in this work. A sizeable data set
is necessary to attain good accuracy post-training. Therefore,
for each signal-to-noise ratio, MATLAB was used to generate
9000 unique modulated signals (1000 signals per modulation
scheme) by varying the AWGN channel levels between -4 dB
to 10 dB.

TABLE I: Modulation types and signal-to-noise ratios used

Modulation Schemes
BPSK,QPSK, 64-QAM, PAM4, GFSK, CPFSK,
B-FM, DSB-AM, SSB-AM

SNRs 10, 8, 6, 4, 2, 0, -2, -4

julio
XI Southern Conference on Programmable Logic SPL2023 2

Then for each modulated signal, 16 sub-band signals (1024
samples in size) were generated by passing the modulated
signal through the pre-processor discussed in section IV-A,
which are then stacked together to form a 16 × 1024 image-
like matrix, which the CNN receives as the input.

A. Empirical Wavelet Transform

Empirical Wavelet Transform (EWT) allows a multi-scale
analysis of a time domain signal using an adaptive wavelet
subdivision scheme. The EWT starts with segmenting the sig-
nal’s spectrum and provides a perfect reconstruction of the input
signal. The EWT coefficients partition the energy of the input
signal into separate pass-bands [13].

Fig. 2: Boundaries applied on the frequency spectrum [9].

In this work, we used Fixed Boundary Range EWT
(FBREWT), where the frequency boundaries of the filter banks
in the Fourier domain are pre-initialized, which means that
regardless of the modulation scheme, the applied filter banks
remain the same. Before creating the final data sets for training,
the generated signals for each modulation scheme are pre-
processed using FBREWT. We then perform the Fourier do-
main analysis on every modulated signal, extracting the sub-
bands with the help of adaptive wavelet filter banks. For a given
radio signal

rn = [r(n)]
N−1
n=0 (1)

where N is the length of the radio signal, the Fourier domain
signal is given by

Rk =

N−1∑
n=0

rn · exp
(
j
2π

N
kn

)
(2)

where k is the frequency at which the Fourier spectrum is
evaluated, and it will be within the range [0, fs/2] where fs is
the sampling frequency of the signal. In the referred work [9],
16 pre-initialized filter banks are applied in the range [0, π]
segmented at Bl = [0.12, 0.24, 0.36, 0.48, 0.60, 0.72, 0.84,
0.96, 1.08, 1.20, 1.6, 2.0, 2.3, 2.7, 2.9], which corresponds to
the following frequency segment array

Fl =
Bl

2π
fs (3)

Filter banks are applied for each of the 16 segments in Fl,
as shown in Fig. 2, to extract the sub-band signals using the

Inverse Discrete Fourier Transform (IDFT) and trim each sub-
band signal to 1024 samples. Thus, a 16 × 1024 sub-band
matrix is generated after pre-processing. The final matrix for
each modulation scheme for a given SNR is appended together
to form a 9000 × 16 × 1024 array and then saved it in Matlab
as a .mat file, which can be later imported to TensorFlow.

B. Training

The models were implemented for each SNR ratio in Ten-
sorFlow and the pre-processed data sets saved from MATLAB
were imported in Python and fed to the CNN. Keras is used
for network description and training and testing stages. Sklearn
library was used to split the data set containing 9000 images
into the training and testing data sets using the train_test_split
function. This function takes x, y, and test_size as inputs. It
returns x_train, y_train, x_test, and y_test as outputs, where
x is the input image data array of 9000 images with each image
of size 16×1024×1, and y is an output labels array representing
the modulation class corresponding to each element in x. The
data set is split in a 9:1 ratio with the test_size chosen to be
0.10; therefore, the x_train and x_test contain 8100 and 900
images, respectively. Similarly, y_train and y_test contain
8100 and 900 labels, respectively. Training was performed for
100 epochs with a batch size of 128 per iteration using Google
Colab, and each model took approximately 20 minutes to reach
saturation in the validation accuracy.

V. DEEP LEARNING PROCESSING UNIT

Xilinx’s DPU is a programmable engine optimized for
convolutional neural networks. The unit includes a high-
performance scheduler module, a hybrid computing array mod-
ule, an instruction fetch unit module, and a global memory pool
module. The DPU uses a specialized instruction set, which effi-
ciently implements many convolutional neural networks. Some
convolutional neural networks deployed include VGG, ResNet,
GoogLeNet, YOLO, SSD, MobileNet, and FPN, among others.
The DPU IP can be implemented in the Programmable Logic
(PL) of the selected Zynq–7000 SoC or Zynq UltraScale+ MP-
SoC device with direct connections to the Processing System
(PS). The DPU requires instructions to implement a neural
network and accessible memory locations for input and tem-
porary and output data. A program running on the Application
Processing Unit (APU) is also required to service interrupts and
coordinate data transfers [14].

A. DPU Architecture

The internal architecture of the DPU consists of a scheduler
module, processing engines (PEs), an instruction unit block,
and a global memory pool module, see Fig. 3. The APU is the
ARM processor on which the application will run, serves inter-
rupts and data transfer from and to the DPU. The instruction
unit handles reading and executing the instructions associated
with the different operations of the accelerated CNN [16]. The
Fetcher’s primary role is to fetch the DPU instructions associ-
ated with the model from memory. The decoder is responsible
for decoding the instructions to drive the PEs. The dispatcher

julio
XI Southern Conference on Programmable Logic SPL2023 3

ARM
Processor

Memory
Controller

Off
Chip
Memory

Compute
Array

PE

PE

PEGlobal Memory
Pool

Processing System (PS) Programmable Logic (PL)

Python
Runtime

Zynq SoC ZCU104

AX
I

BU
S

DPU
Instruction

Unit

Fetcher

Dispatcher
Decoder

Fig. 3: ZCU104 Zynq UltraScale+ MPSoC evaluation board
showing PS, PL, and internal architecture of DPU [15].

manages the data/instructions transfer among the PEs and the
memory. The Global Memory Pool acts as a buffer for the
input and output data and intermediate output from the DPU,
which results in high throughput [16]. DPU is configurable and
exposes several parameters which can be specified to optimize
PL resources or customize enabled features. The DPU can be
configured to meet the demands of a specific CNN architecture,
which is why the DPU outshines other development flows.
Xilinx’s tools that are provided for configuring the DPU offer a
lot of flexibility in choosing the framework (such as Tensorflow,
Caffe and PyTorch), and the development flow uses the Vitis
AI docker image, which contains all the necessary libraries to
generate the instructions for the DPU.

VI. VITIS AI FRAMEWORK

The Vitis AI development environment accelerates AI in-
ference on Xilinx hardware platforms, including edge devices
and Alveo accelerator cards. It consists of optimized IP cores,
tools, libraries, models, and example designs. It is designed
with high efficiency and ease of use in mind, unleashing the the
full potential of AI acceleration on Xilinx FPGAs. It makes it
easier for users to develop deep-learning inference applications
by abstracting away the intricacies of the underlying FPGA.

The development flow is described in Fig. 4; the model is
first trained in the TensorFlow framework using the data set
generated from MATLAB. Training epochs are repeated until
the validation loss and accuracy reach a saturation point, after
which the model weights (which are in 32-bit floating point
format) are exported to a file in hdf5 format. The Vitis AI tools
provide a model quantizer that supports all major frameworks,

and it is used to convert the 32-bit floating point weights to 8-bit
fixed point representation. This process uses a small calibration
data set (in our case, it contains 900 samples) to minimize the
accuracy loss due to a reduction in the model weight precision.
After the quantization stage, the model is passed to the Vitis AI
compiler, which converts the model graph to a set of domain
specific instructions for the DPU unit; these instructions are
saved to an Xmodel file which is loaded at run time. During
inference, a Python script running on the APU acts as the
mediator between the PS and PL; the script transfers the data
from the on-chip memory to the DPU memory buffers. The
DPU executes the instructions and the output classification
vector is received in the Python run time. The details about the
quantizer and compiler are briefly discussed in the next section.

A. Vitis Quantizer

In the context of DL, quantization is the process of repre-
senting the model weights in a smaller number of bits which
reduces the numerical precision of the network, its complex-
ity, and memory footprint, consequently resulting in reduced
energy and storage costs [17]. Efficient quantization results in
reduction in the overall model file size while mitigating the loss
in accuracy. The Vitis AI quantizer relies on the AdaQuant [17]
algorithm, which consumes a small calibration data set from
training data without over-fitting and converts the numerical
representation of the model weights from 32-bit floating point
to 8-bit fixed point representation.

B. Vitis Compiler

The domain-specific compiler that comes with Vitis AI con-
verts the quantized model into the appropriate sequence of
instructions that drive the DPU. This is accomplished by iden-
tifying each layer and converting it into equivalent instructions.
By the end of such a process, the main goal is to generate
the kernels that shall be deployed on the FPGA and then used
by API functions provided to drive the accelerators [16]. In
this work, the Vitis AI compiler compiles the classification
model after quantizing them into 8-bit fixed-point representa-
tion, which is the default post-quantization size.

C. Vitis API and Overlays

Overlays are hardware libraries that extend the user ap-
plication from the PS into the PL. Overlays can accelerate
a software application or customize a hardware platform for
a particular application. For example, image processing is a
typical application where the FPGAs can provide acceleration.
We can use an overlay similar to a software library to run
some of the image processing functions on the FPGA fabric.
Similarly, the DPU can be considered an overlay that can be
called from the PS using Vitis APIs to accelerate convolution
layers on the PL. Initially, the data is stored in the off-chip
memory, controlled by the DDR-controller through the AXI-
Bus.

Model description in the off-chip memory is loaded onto
the on-chip DPU buffers as a part of configuring the DPU for
acceleration. Once the DPU finishes a process, the data is taken

julio
XI Southern Conference on Programmable Logic SPL2023 4

Tensorflow Keras

Dataset

Model

loss, accuracy

Training

update weights

Saturated?

Vitis AI

8bitsQuantisation

CompilationXmodel

Overlay

Inputs

Outputs
DPUPython

APIs

32 bits

Fig. 4: Development flow to convert the model from Tensor-
Flow to hardware implementation.

from the output on-chip buffers back to memory for any desired
post-processing. The data includes the model input image, with
a size of 16 × 1024, the model weights and biases, and model-
associated instructions. The main objective of the Vitis API
functions is to configure the DPU for the CNN model desired
to be accelerated, which includes reading the DPU instruction
sequence of the model and loading weights in the DPU [16].
Moreover, the API functions handle the data exchange between
the CPU and the DPU, which allows the data to be pre-
processed before being fed to the DPU or post-processed after
carrying out the inference, which the DPU accelerates.

VII. RESULTS

The CNN model was trained in TensorFlow to get similar
accuracy as the MATLAB implementation described in the
paper [9]. Table II depicts the accuracy comparison between
the MATLAB and the TensorFlow implementations; we can
observe that the accuracy is comparable; the 6 dB and 8 dB
SNR take a ≤ 2% dip in accuracy, whereas the rest are within
±1% range.

TABLE II: Comparison of obtained from the referred work with
TensorFlow implementation

SNR(dB) MATLAB(tanh) [9] TF2(tanh)
10 96.44 95.91

8 96.89 95.49
6 93.56 90.34
4 89.11 87.21
2 82.22 81.93
0 73.11 74.44

–2 63.78 64.56
–4 59.56 61.87

The referred CNN model in [9] uses tanh activation func-
tions. However, Xilinx’s DPU does not support tanh activation
function; therefore, the model had to be retrained using ReLU
activation functions which posed quite a challenge since the

TABLE III: Accuracy comparison for each SNR values across
different implementations

SNR
(dB)

Software
Implementations

Hardware
Implementation

MATLAB(tanh) [9] TF2(tanh) TF2(ReLU) DPU(ReLU)
10 96.44 95.91 97.22 94.44
8 96.89 95.49 96.67 96.00
6 93.56 90.34 93.56 92.78
4 89.11 87.21 89.11 85.44
2 82.22 81.93 80.89 79.69
0 73.11 74.44 73.56 69.33
–2 63.78 64.56 66.67 63.11
–4 59.56 61.87 60.00 54.89

Avg 81.83 81.46 82.21 79.46

learning rate at which the model reached saturation for tanh
activation is different from ReLU. So a new learning rate
scheduler had to be implemented that exponentially reduces
the learning rate with the number of training epochs. Table III
shows that the TensorFlow ReLU implementation is better than
the TensorFlow tanh implementation and matches the MAT-
LAB results from the referred paper. However, since the DPU
implementation uses the quantized 8-bit weights, the model
took a significant hit to the accuracy for ±4 dB and −2 dB
SNR with ≤ 5% dip in accuracy. Still, the other SNRs were
within a 2% range. The average classification accuracy for the
DPU implementation was 79.46% which is not that far from the
81.83% average accuracy in the referred paper.

A. DPU Performance and Resource Utilization

The DPU is connected to the ARM processor through an
AXI bus on the FPGA chip to manage task scheduling and
offloading weights and data to the DPU. AXI bus carries
data and weights to the DPU. The DPU power consumption
and resource utilization are optimized by leveraging special
UltraRAM slices. The UltraRAM is a novel memory solution
by Xilinx, which introduces higher memory speed with low
energy consumption and resource utilization [18]. Table IV
summarizes the resource utilization on the ZCU104 with the
DPU, indicating that running the DPU on the fabric is quite a
resource-intensive task.

B. FPGA vs CPU Performance

Perhaps the most exciting part of the current work is an-
alyzing the performance against an edge device that is CPU
only. For this purpose, a Raspberry Pi model 4 was chosen,
which contains a Quad core Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz and 4 GB of RAM. The TensorFlow model
was slimmed down using TensorFlow Lite and the inference
metrics were extracted from both the CPU (with all four cores
utilized) and the DPU implementations, which are summarized
in Table V and Table VI, respectively. From the results, we can
observe that the classification times per sample on the Rasp-
berry Pi comes out to be around 24.5/900 = 0.0272s, whereas
the on the DPU it is approximately 0.5/900 = 0.00055s. This
roughly translates to a speed boost of 50× the time taken by a
quad core ARM CPU.

julio
XI Southern Conference on Programmable Logic SPL2023 5

TABLE IV: DPU resource utilisation on the ZCU104 board.

Metric LUT LUT As Mem Registers BRAM URAM DSP Slices
Total Resources 227696 101516 456485 308 96 1728
Used by DPU 103171 11224 199093 290 92 1380

Resource Utilisation 45.31% 11.06% 43.61% 94.16% 95.83 79.86

TABLE V: Metrics on Raspberry Pi for validating 900 samples.

SNR(dB) Throughput (FPS) Time Accuracy
10 36.32 24.777 97.22
8 37.54 23.971 96.67
6 37.51 23.988 93.44
4 36.97 24.344 89.11
2 37.05 24.286 80.89
0 36.24 24.830 73.56
–2 37.63 23.911 66.67
–4 36.67 24.542 60.00

TABLE VI: Metrics on the ZCU104 for validating 900 samples.

SNR(dB) Throughput (FPS) Time Accuracy
10 1769.86 0.5085 94.44
8 1802.72 0.4992 96.00
6 1786.66 0.5037 92.78
4 1799.79 0.5001 85.44
2 1790.78 0.5026 79.69
0 1798.87 0.5003 69.33

–2 1765.70 0.5097 63.11
–4 1792.02 0.5022 54.89

VIII. CONCLUSIONS

In this paper, we proposed Xilinx’s DPU-based hardware
accelerator for an automatic modulation classifier based on
FBREWT and deep CNN using the ZCU104 FPGA. A total
of eight SNRs and nine modulation schemes were used (six
digital modulation signals [BPSK, QPSK, 64-QAM, PAM4,
GFSK, CPFSK] and three analog modulation signals [B-FM,
DSB-AM, SSB-AM]). The details about data set generation
in MATLAB and pre-processing were discussed briefly. The
model weights were quantized from a 32-bit floating point rep-
resentation to 8-bit fixed point representation with an accuracy
loss margin of 5%. The model was compiled using the Vitis
AI framework, which accepts TensorFlow model and generates
instructions for configuring the DPU. Python APIs were used
to transfer the data between the DPU and ARM chip on the
Zynq SoC. The proposed accelerator could achieve an average
classification accuracy of 79.46%, with the highest accuracy
of 96.00%. It was successfully demonstrated that our FPGA
hardware accelerator outperforms with respect to classification
time when compared to the tflite model running on the Rasp-
berry Pi containing the quad-core ARM CPU. The proposed
accelerator was observed to perform reasonably well at low
SNRs (≤ +6 dB) compared to similar works. The accelerator
achieves a 50× boost in classification speed compared to the
CPU implementation using Raspberry Pi having a quad core
Cortex-A72 (ARM v8) 64-bit SoC @1.5GHz. A throughput
of 1.8K classifications/sec could be achieved with 550µs per
classification.

REFERENCES

[1] Z. Zhu and A. K. Nandi, Automatic modulation classification: principles,
algorithms and applications. John Wiley & Sons, 2015.

[2] O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modu-
lation classification techniques: classical approaches and new trends,” IET
Communications, vol. 1, pp. 137–156(19), April 2007.

[3] T. Huynh-The, Q.-V. Pham, T.-V. Nguyen, T. T. Nguyen, R. Ruby,
M. Zeng, and D.-S. Kim, “Automatic modulation classification: A deep
architecture survey,” IEEE Access, vol. 9, pp. 142 950–142 971, 2021.

[4] S. A. Ghunaim, Q. Nasir, and M. A. Talib, “Deep learning techniques
for automatic modulation classification: A systematic literature review,”
in 2020 14th International Conference on Innovations in Information
Technology (IIT), 2020, pp. 108–113.

[5] S. Kumar, R. Mahapatra, and A. Singh, “Automatic modulation recogni-
tion: An fpga implementation,” IEEE Communications Letters, pp. 1–1,
2022.

[6] A. F. De Castro, R. S. R. Milléo, L. H. A. Lolis, and A. A. Mariano, “Ar-
tificial neural network based automatic modulation classification system
applied to fpga,” in 2021 34th SBC/SBMicro/IEEE/ACM Symposium on
Integrated Circuits and Systems Design (SBCCI), 2021, pp. 1–6.

[7] S. Soltani, Y. E. Sagduyu, R. Hasan, K. Davaslioglu, H. Deng, and
T. Erpek, “Real-time and embedded deep learning on fpga for rf signal
classification,” in MILCOM 2019 - 2019 IEEE Military Communications
Conference (MILCOM), 2019, pp. 1–6.

[8] V. Kathail, “Xilinx vitis unified software platform,” in Xilinx Vitis
Unified Software Platform, ser. FPGA ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 173–174. [Online].
Available: https://doi.org/10.1145/3373087.3375887

[9] R. R. Yakkati, R. R. Yakkati, R. K. Tripathy, and L. R. Cenkeramaddi,
“Radio frequency spectrum sensing by automatic modulation classifica-
tion in cognitive radio system using multiscale deep cnn,” IEEE Sensors
Journal, vol. 22, no. 1, pp. 926–938, 2022.

[10] S. Tridgell, D. Boland, P. H. Leong, R. Kastner, A. Khodamoradi, and
Siddhartha, “Real-time automatic modulation classification using rfsoc,”
in 2020 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), 2020, pp. 82–89.

[11] M. Keshk and K. Asami, “Fpga-based automatic modulation recognition
system for small satellite communication systems,” 2017.

[12] X. LIU, J. SHANG, P. H. Leong, and C. LIU, “Modulation recognition
using an fpga-based convolutional neural network,” in 2019 22nd Inter-
national Conference on Electrical Machines and Systems (ICEMS), 2019,
pp. 1–6.

[13] J. Gilles, “Empirical wavelet transform,” IEEE Transactions on Signal
Processing, vol. 61, no. 16, pp. 3999–4010, 2013.

[14] A. Xilinx. (2019) Zynq dpu v3.1. AMD Xilinx. [Online]. Available:
https://docs.xilinx.com/v/u/3.1-English/pg338-dpu

[15] J. Zhu, L. Wang, H. Liu, S. Tian, Q. Deng, and J. Li, “An efficient
task assignment framework to accelerate dpu-based convolutional neural
network inference on fpgas,” IEEE Access, vol. 8, 2020.

[16] A. S. Hussein, A. Anwar, Y. Fahmy, H. Mostafa, K. N. Salama, and
M. Kafafy, “Implementation of a dpu-based intelligent thermal imaging
hardware accelerator on fpga,” Electronics, vol. 11, no. 1, 2022. [Online].
Available: https://www.mdpi.com/2079-9292/11/1/105

[17] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry, “Improving
post training neural quantization: Layer-wise calibration and integer
programming,” CoRR, vol. abs/2006.10518, pp. 2–3, 2020. [Online].
Available: https://arxiv.org/abs/2006.10518

[18] A. Xilinx. (2016) Ultraram: Breakthrough embedded memory integration
on ultrascale + devices; technical report wp477. AMD Xilinx. [Online].
Available: https://docs.xilinx.com/v/u/en-US/wp477-ultraram

julio
XI Southern Conference on Programmable Logic SPL2023 6

FPGA Implementation of Staggered Cellular
Automata for Wave Propagation Simulation
Gustavo O. Pereira∗, Santiago Guzman-Anaya†, Henrique G. Moura‡ and Daniel M. Muñoz∗†

∗Faculty of Gama, Electronics Engineering Undergraduate Program
‡Faculty of Gama, Automotive Engineering Undergraduate Program

†Department of Mechanical Engineering, Mechatronics Graduate Program, Automation and Control Group/GRACO
University of Brasilia, Brasilia, DF, Brazil

Email:gustavo.galvao@aluno.unb.br, santiago.anaya@aluno.unb.br, hgmoura@unb.br, damuz@unb.br

Abstract—The simulation of acoustic phenomena using a
system resolution by ordinary PDEs is a work that demands a
high computational cost. Using the phenomenon of propagation
of acoustic waves in an ideal elastic medium in a steady state,
it is possible to use a cellular automata system to simulate
the phenomena. Even implementing a hardware solution using
CA, the computational cost to simulate very large meshes is
high. This work proposes a hardware architecture for a one-
dimensional staggered cellular automata system model based
on hybrid cells that can represent the basic wave phenomena.
The proposed hybrid cell guarantees the simulation of different
types of meshes without having to remodel the circuit. The
proposed one-dimensional staggered cellular automata was able
to successfully simulate 187 cells using a block composed of
ten cells. The proposed solution enables the simulation of large
meshes using FPGA devices with few resources.

Index Terms—Cellular Automata, FPGA, Floating-point Arith-
metics, Hardware-Software Co-design.

I. INTRODUCTION

A partial differential equation (PDE) is a mathematical
relation that may involve two or more partial derivatives of
an undefined function. These kinds of equations are widely
used in engineering modelings, because of their faithful
representation of physical phenomenons [11]. However, the
computational solution of PDEs is a hard numerical task and
a time-consuming process [16].

Sound propagation is an engineering problem that can be
stated in many physical situations and projects. Sound wave
propagation can be described by the second law of motion
of physical systems and, because of that, it is not easy to
handle. Firstly, in practical simulations, the wave interacts
with the involved complex geometries in space. Secondly, the
wave equation that describes the sound wave propagation is a
parabolic PDE, describing a time-dependent phenomenon [7].

In acoustic modelings, the PDEs need to consider many
details on discrete signal processing, in addition to other
application issues. Thus, working with PDEs may be useful
for simple and small structure modelings, only.

Cellular automata (CA) modeling can be used to reduce
the computational cost needed to solve PDEs. This numerical
modeling approach considers a system of artificial cells that
brings, inside their units, a very simple set of mathematical
rules and well-defined states. In the case of sound propagation,
in an ideal elastic medium and steady state, the well-known

d’Alembert solution, applied to the one-dimensional wave
movement, can be used to describe all the CA basic rules.

Recently, a hardware architecture of a CA was developed
and implemented on FPGA devices, being able to emulate
the basic wave phenomenons in one-dimensional systems
[10]. The proposed organisms use three different cells to
model dispersion, generation and hybrid mechanisms, and the
results showed that the CA model fits the analytical solution.
However, considering that each cell must represent a very
small, and fixed piece of the studied environment, the authors
stated that the solution may suffer with limited resources on
the chip [9].

To overcome the above problem, this work presents a stag-
gered solution for CA and proposes a hardware architecture
for FPGA implementation. The staggered approach allows CA
organisms to be divided into several pieces, called blocks of
cells, that emulate wave propagation phenomena by using only
the current state and the past state of each cell and its neighbors
until the whole desirable calculation of the physical system is
performed. The proposed approach can be implemented on
small FPGA devices, in order to cover large physical systems.

In addition, this work proposes a generic cell for wave
propagation in one dimension and its respective hardware
implementation. The generic CA can be used to cover all
the basic wave phenomenons, simplifying the hardware imple-
mentation of artificial organisms and improving the staggered
approach efficiency.

Cellular automata and their implementation strategies have
been recently studied for simulating different physical phe-
nomena. An FPGA implementation of the popular CA system,
called “the Conway’s game of life” was implemented in
[1] achieving an acceleration factor of 36,7 times than an
equivalent GPU (Graphic Processing Units) application and,
2908 times faster than a traditional CPU solution.

The work presented by [14], brings an adaptive CA ap-
proach to the wave propagation problem, in two-directional
space. The obtained results were compared to numeric and
analytical models, available in the specific literature, with
good convergence. A CA emulation of seismic events was
implemented on a super-computer, obtaining results that ex-
ceed previous software simulated applications [5]. Another
contribution was presented by [6] which developed a CA

julio
XI Southern Conference on Programmable Logic SPL2023 7

system to emulate structure-borne noise in one, two, and three-
dimensional cases. The results pointed out a good convergence
to the specific literature applied to the problem, which means
that a new strategy becomes useful to the mentioned problem.

Jiménez-Morales et al. presented an alternative CA solution
to the traditional PDEs model for laser’s dynamic [4]. There
were proposed variants to the traditional models, applied to
different kinds of lasers. The obtained results were quantita-
tively validated for many real scenarios. The work presented
by [2] brings a CA model able to emulate a ruptured biological
diaphragm. The model was experimentally validated in a non-
trivial problem.

Table I summarizes the related works using CA models. It
can be seen, in the mentioned works, that only one is focused
on the modeling of wave phenomenons propagation problems,
considering its basic interactions with the obstacles in space.
However, the obtained implementation holds some limitations
related to the number of cells that could be parallelized
in hardware, and, as a consequence, limits the size of the
emulated physical system.

TABLE I
STATE OF ART

Authors Year Kind of solution Plataforms
Bakhteri, Cheng,
and Semmelhack
[1]

2020 A SoC implementation of
a CA system for the Con-
way’s game of life.

FPGA

Shafiei, Khaji, and
Eskandari-Ghadi
[14]

2020 Adaptive CA system ap-
plied to sound wave propa-
gation in an elastic lossless
bidimensional case.

CPU

Lin and Zhao [5] 2020 Seismic events modeling
using CA systems.

Super-
computer

Luo, Wang, and
Lei [6]

2021 A CA modeling applied to
the emulation of structure-
borne noises.

CPU

Jiménez-Morales,
Guisado, and
Guerra [4]

2018 Presentation of an alterna-
tive CA model applied to
laser’s dynamics.

CPU

Gupta, Gözen, and
Taylor [2]

2019 CA system to emulate
a ruptured biological di-
aphragm.

CPU

Moura and Muñoz
[10]

2021 SoC implementation
of a CA model to
emulate acoustic wave
phenomenons in one-
dimensional space.

FPGA

II. BACKGROUD

A. Digitalized d’Alembert’s Solution

Considering a plane wave propagating in the x direction,
the propagation equation is [3]

∂2p(x, t)

∂t2
− 1

c20

∂2p(x, t)

∂t2
= 0 (1)

Manipulating this equation, it is possible to describe a
solution based on the addition of two concurrent wave plots
at any point in space [8] as follows,

p = f(x− c0t) + g(x+ c0t) (2)

This equation is known as d’Alembert’s solution to the one-
dimensional acoustic wave equation. Figure 1 represents the
digitization of d’Alembert’s solution for one-dimensional wave
propagation. Notice that the sound pressure p(n) is the sum
of the plots p+(n) and p−(n), where n is the instant of time .

Fig. 1. Digitized d’Alembert solution for the one-dimensional wave. The
output signal of point A is the input signal of point B, and vice versa [9].

Considering a generalized case where the waves can come
from N different directions, the sound pressure at point J is
calculated by

pJ =

2N∑
i=1

p+i ψi, (3)

where p+i is the input sound pressure coming from direction
i and ψi is the transmission coefficient. This equation is the
mathematical model that will be used for the development
of the CA model, as it represents the digitized d’Alembert
solution for the one-dimensional wave. Figure 2 shows how
the wave transmission and reflection phenomena occur within
a medium of impedance Z1 with an obstacle of impedance
Z2. In the figure, p+ represents the portion incident on the
obstacle, p− as the portion reflected by the obstacle, and ptr

as the portion transmitted through the obstacle.

Fig. 2. Transmission and reflection of plane wave in a one-dimensional space.
When passing through an obstacle, a part of the signal p+ is reflected, and
the other part ptr is transmitted.

Considering that the characteristic impedance (R) of the
medium can be determined by the ratio between sound
pressure and the particles velocity, and assuming that the
transmitted energy and the reflected energy are equal to the
incident energy, the transmission coefficient can be stated as,

ψi =
2Ri

RJ +
∑2N

i=1Ri

(4)

Combining the equations 4 and 3, the solution to the one-
dimensional wave transmission problem is obtained as,

julio
XI Southern Conference on Programmable Logic SPL2023 8

pJ =
2R1

R1 +R2
p+right +

2R1

R1 +R2
p+left, (5)

where RJ is the characteristic impedance in the joint J , Ri

is the characteristic impedance of the front (point A) and rear
(point B) joints, and p+right and p+left are the pressure on the
right and left, respectively.

B. Camphs1D System

The cellular automata system Camphs1D (Cellular Au-
tomata Modeling of One-dimensional Physical Systems) was
proposed and implemented in [10]. This model implements
the phenomena of one-dimensional wave propagation and
reflection using a CA system.

To develop this system, three types of cells were modeled
considering the wave physics phenomena: a) a dispersion
cell that transmits the signal that comes from its neighboring
cells (eq. 6); b) a generation cell that generates a signal and
transmits it to its neighboring cells (eq. 7); and c) a hybrid
cell that receives a signal and transmits and reflects part of
this signal (eq. 8). The symbols “+” and “-” represent propa-
gation direction, αr and αt are the reflection and transmission
coefficients, n is the time constant, and p is the pressure.

(
p+i

)
= αt ∗

(
p+i−1

)
n−1(

p−i
)
= αt ∗

(
p−i−1

)
n−1

(6)

(
p+j

)
n
=

(
p+f

)
n(

p−j
)
n
=

(
p−f

)
n

(7)

(
p+

)
n
= αt ∗

(
p+i−1

)
n−1

+ αr ∗
(
p−i+1

)
n−1(

p−
)
n
= αt ∗

(
p−i−1

)
n−1

+ αr ∗
(
p+i+1

)
n−1

(8)

It is worth mentioning that, although in a strictly physical
sense the term “dispersion” represents velocity and frequency
changes, we maintained the terminology and formulation of
the digital waveguides stated in [15], in which the term
“dispersion” was coined for the propagation of acoustic waves.

III. GENERIC ONE-DIMENSIONAL CELL MODEL

The proposed cells represent a new cell model for all the
functions implemented in [10]. In order to facilitate the imple-
mentation of complex CA systems, this work presents a hybrid
cell hardware architecture, named HGCA, that behaves like
any of the three cells (see Fig. 3). Deriving an equation from
the architecture is not straightforward because the architecture
mixes the behavior of three cells by using muxes that enable
the evaluation of the necessary conditions to select the required
behavior (dispersion, generation, or hybrid).

The HGCA cell consists of 5 floating-point multipliers, 2
floating-point adders, 2 3x1 multiplexers, 2 4x1 multiplexers, 1
OR logic gate, and 6 buffers signal. It has 14 input signals and
4 output signals of different sizes. The floating-point arithmetic
representation was used to provide a large dynamic range if

-

4x
1 4x1

leftin

left

rightin

right

crossleft crossright

right_stimleft_stim

0

gain source mode

rightout leftout

clkreset sce_stim

3x13x
1

ready

ready ready

ready

ready

ready ready

left_readyright_ready

HGCA

Fig. 3. Generic cell structure implemented in reconfigurable hardware. The
HGCA cell is composed of 5 multipliers, 2 adders and 4 multiplexers.

compared to fixed-point, allowing very small and very large
numbers to be represented with the same bit-width [13].

Comparing the structure of the HGCA cell proposed in Fig.
3 with cells reported in [10], it is noted that the HGCA cell
has more floating-point operations; however, it provides the
flexibility of choosing which mechanism the cell will follow
at each time instant.

Looking at the latency of each mode that the cell can
operate, it can be noticed that a hybrid cell has the highest
time consumption with 4 clock cycles. Both dispersion and
generator cells, have a latency of 2 clock cycles, causing a
delay in the system when a hybrid cell acts together with the
others. Thus, some buffers were used to delay the ready signals
in the faster modes. From this, the default latency time for this
cell model is 4 clock cycles.

IV. PROPOSED STAGGERED ARCHITECTURE

This architecture allows the cellular automata simulation to
be divided into blocks of cells. Thus, small FPGA devices with
fewer resources can simulate larger wave propagation systems.

Figure 4 depicts the proposed staggered cellular automata.
The main idea is to have a separate block of cells communicat-
ing with a software application. The cell block represents the
structure where the cells are stored and the application sends

julio
XI Southern Conference on Programmable Logic SPL2023 9

to each cell the mode of operation, and the neighbors’ current
and past states. The maximum number of cells that can be
stored in the block depends on the logical resources assigned.
The application block could be implemented in software with
a processor or in hardware using a Finite State Machine.

Fig. 4. Staggered architecture reference model with the generic cells. The
communication is directly with the cell block.

In this work the staggered architecture was implemented
in VHDL using floating point arithmetic operation IP-Cores,
previously developed [13], [12]. Using the FOR GENERATE
directive, it was possible to develop a parameterized solution
for the number of cells the block can implement.

This cellular automata system emulates acoustics behaviors
considering a homogeneous medium, i.e the same characteris-
tics in all directions, and thin rigid walls that only produce
reflections. Changes in the propagation medium were not
considered in this work; however, a cellular automata system
can implement this situation by adapting the distance between
two neighboring cells (the higher the density, the closer the
particles of the propagation medium). The distance between
two consecutive cells can be implemented with registers that
emulate the time delays representing the length between the
cells. It is important to highlight that analytical methods, such
as digital wave guides [15], commonly use the same sampling
frequency and, as a consequence, only homogeneous mediums
can be studied.

For comparison purposes, the same artificial organism
Camphs1DB9G2 proposed in [10] was used, allowing the
response obtained by the staggered and non-staggered solu-
tions to be compared. The organism Camphs1DB9G2 uses
187 cells, 3 hybrids, 2 generators, and the remainder are
dispersion cells. The hybrid cells are at positions 2, 130, and
186. The first generator cell is at position 43 and operates
for 16-time intervals, then changes to dispersion mode. The
second generator cell is at position 93 and operates for 8-time
intervals, then changes to dispersion mode. For the generator
cells, two sinusoidal signals were created according to the

sampling frequency of the system. In the staggered solution,
the cell block was implemented with 10 parallel HGCA cells.

Testbenches with reading and writing capabilities were
developed to test the proposed architecture. Octave scripts
were developed to automatically get the text files from the
generator cells.

For the physical implementation of the one-dimensional
staggered cellular automata system model, two main compo-
nents are needed: the cell block to calculate the outputs of
each cell and a software application, which would be in charge
of controlling the cell block inputs and modes of operations.
In this work a hardware-software co-design was developed to
integrate the cell block to the ARM processor of a Zynq 7020
System on Chip (SoC) device using the AXI4-Lite protocol.
Thus, the information about the cells is controlled by the
ARM processor. Using this principle, the mesh size limitation
simulated by the FPGA will be associated with the memory
size of the processor.

V. RESULTS

A. Resources Occupation as a Function of the Bit-width

A numerical accuracy study with the proposed HGCA cell
was done taking into account the bit-width of the exponent
and mantissa words of the floating-point representation. The
considered values for the mantissa word were 11, 13, 16 and
18 bits while the bit-width of the exponent word changed
between 6 and 8 bits. For each proposed combination, the
consumption of LUTs, FFs, DSPs and BRAM were collected
after logic synthesis using Vivado and the Zynq 7020 SoC
device from Xilinx. Table II shows the result obtained after
the logic synthesis process for each of the cases.

TABLE II
HARDWARE OCCUPATION OF THE HYBRID CELL.

Bits LUT FF DSP BRAM
EXP:8 FRAC:18 27 1125 314 5 0
EXP:8 FRAC:16 25 884 292 5 0
EXP:8 FRAC:13 22 740 259 5 0
EXP:8 FRAC:11 20 683 237 5 0
EXP:6 FRAC:18 25 1086 296 5 0
EXP:6 FRAC:16 23 819 274 5 0
EXP:6 FRAC:13 20 687 241 5 0
EXP:6 FRAC:11 18 617 219 5 0

A significant reduction in the consumption of LUTs and
FFs was observed when the bit-width of the mantissa reduces
from 18 to 16 bits. When decreasing the number of bits of the
mantissa, the reduction still occurs, but in a smaller size. The
reduction in the exponent size did not generate a significant
change in the consumption of LUTs but had a slight reduction
in the consumption of FFs.

For the sake of numerical comparisons with previous works,
we decided to implement the proposed HGCA cell and the
staggered CA architecture using a 27-bit floating-point repre-
sentation (8 bits for the exponent word and 18 bits for the
mantissa word).

julio
XI Southern Conference on Programmable Logic SPL2023 10

B. Resource Occupation of the HGCA Cell

The generic HGCA cell proposed in Fig. 3 was encapsulated
with an AXI4-Lite interface, to validate its physical imple-
mentation on a Xilinx Zynq 7020 FPGA SoC with a clock
frequency of 100 MHz. Table III shows the resource utilization
of the generic cell, with a consumption of 1119 LUTs, 303
FFs and 5 DSPs.

TABLE III
RESOURCE UTILIZATION OF THE HGCA CELL

.

Resource Estimated Available Utilization%
LUT 1119 53200 2,10
FF 303 106400 0,28

DSP 5 220 2,27
BRAM 0 140 0

Figure 5 shows the circuit layout after the Place and Route
process. In red is shown the occupation of slices by the HGCA
cell. In blue, are shown the AXI4-Lite interface and other
modules. One can conclude that it is possible to scale the
number of cells in the Zynq 7020 device, as will be presented
in the following subsection.

C. Characterization of the Staggered Cellular Automata

The validation of the proposed staggered CA architecture
was carried out through behavioral simulations and from the
physical implementation of a block of 10 HGCA cells using
a Zynq 7020 SoC device at a clock frequency of 100 MHz.

Initially, the VHDL description of the artificial organism
Camphs1DB9G2 (consisting of 187 cells) was validated in
behavioral simulation using TXT files with memory values of
each cells of the block at different positions and time instants.

Figure 6 shows the initialization of the simulation. Notice
that the firststart signal initializes the simulation and, from
here, the system starts reading new inputs into the cells when

Fig. 5. The result obtained from PAR (Place and Route) after implementing
the cell together with the ARM processor. In red is the region of logical blocks
occupied by the HGCA cell. In cyan is the rest of the logical blocks occupied
by the solution. In orange is the space occupied by the ARM processor.

the cell block finishes calculating the outputs of the simulated
cells. Over the course of the simulation, it can be noticed
that the number of cells simulated at each time instant is
increasing 10 by 10 with the node cnt signal (in magenta).
When simulating 187 cells at each time instant, the iteration
counter is incremented (it cnt). The simulation continues until
160-time iterations are completed.

During the simulation, the output values of a cell block
were stored in a TXT file, which was used as input for the cell
blocks in the next iteration. These files were also used to visu-
alize and validate the output of the architecture from a script in
Octave. For visualization purposes, the results of the outputs of
each cell were summed left and right. With this result, a video
was generated showing the outputs obtained from the proposed
staggered architecture (https://youtu.be/BZG6xB7996U).

To simulate the required 160-time cycles of the 187 cells,
182.46 µs were required, thus achieving a throughput of
0.877 MOPS, whereas the non-staggered hardware architecture
achieved a throughput of 25 MOPS [10]. On the other hand,
the non-staggered solution, for the same system implemented
in C (GCC compiler), required 0.7128 s running on the ARM
processor and 0.1138 s for an AMD Ryzen7 3700U, 17.8GB
RAM, Linux Mint 20.3.

Figure 7 shows the result of the staggered architecture
mapped on a Zynq 7020 device. The proposed circuit was
effectively mapped on the FPGA device using a clock fre-
quency of 100 MHz. Table IV shows a resource utilization
of the proposed architecture for the Camphs1DB9G2 system.
A comparison with our previous work [10], which does not
fit on the Zynq 7020 device, demonstrates that the proposed
staggered dramatically reduces the resource occupation.

TABLE IV
RESOURCE UTILIZATION OF THE STAGGERED SOLUTION.

Architecture Platform LUTs FFs DSPs BRAMs
Staggered Z7020 12361 5877 50 2

(Total) Zedboard
Staggered Z7020 11052 3030 50 0

(block cells) Zedboard
Non-staggered ZU7EV 22422 21924 372 0

(block cells) [10] ZCU104

The energy consumption of the staggered solution for a
clock frequency of 100 MHz was approximately 0.142 W of
static power and 1.565 W of dynamic power, being 96% of
the dynamic power dissipated by the ARM processor.

VI. CONCLUSIONS

This work proposed a one-dimensional staggered cellular
automata system to simulate acoustic wave propagation phe-
nomena. The proposed solution is based on a generic cell
structure that emulates the dispersion and reflection wave prop-
agation mechanisms in a one-dimensional space. The model
was able to simulate larger systems with fewer computational
resources if compared to the previous solution in [10].

A hardware-software co-design was proposed for the in-
tegration of the staggered cellular automata system with an

https://youtu.be/BZG6xB7996U
julio
XI Southern Conference on Programmable Logic SPL2023 11

Fig. 6. Behavioral simulation result of the staggered solution with blocks of 10 cells for the Camphs1DB9G2 system. In cyan the left and right start signals,
in red the ready signals, in yellow the mode signals, and in magenta the counter with the number of simulated cells.

Fig. 7. Result obtained from PAR (Place and Route) after implementing the
cell block with AXI4-Lite and the ARM processor. In red, there is the region
of logical blocks occupied by the block of HGCA cells. In cyan, we have the
rest of the logical blocks occupied by the solution. In orange, we have the
space occupied by the ARM processor.

ARM processor. Thus, when integrating the processor with
the DDR memory present in the development kit, the solution
would be limited to the size of the DDR memory and not
to the on-chip BRAM memory, which is always a scarce
resource. This solution allows the simulation of thousands of
cells, without being limited by the resources of the FPGA
device.

As future works, we intend to replace the ARM processor
with a Microblaze soft-processor, allowing a considerable re-
duction in energy consumption. It is also expected to develop a
staggered cellular automata model in two dimensions, allowing
real simulations of acoustic phenomena to be accelerated. Ad-
ditionally, we intend to model wave phenomena using internal
registers between the cells allowing different frequencies and
propagation speeds to be emulated.

REFERENCES

[1] Rabia Bakhteri, Julian Cheng, and Alex Semmelhack. Design and
implementation of cellular automata on FPGA for hardware accel-
eration. Procedia Computer Science, 171:1999–2007, 2020. Third

International Conference on Computing and Network Communications
(CoCoNet’19).

[2] Abhay Gupta, Irep Gözen, and Michael Taylor. A cellular automaton for
modeling non-trivial biomembrane ruptures. Soft Matter, 15:4178–4186,
2019.

[3] D.E. Hall. Basic Acoustics. Krieger, 1993.
[4] Francisco Jiménez-Morales, José Luis Guisado, and José Manuel Guerra.

Simulating Laser Dynamics with Cellular Automata, pages 405–422.
Springer International Publishing, Cham, 2018.

[5] Zhe Lin and Xiaohua Zhao. An improved approach to simulate seismic
events based on cellular automata. International Journal of Modern
Physics C, 31(04):2050053, 2020.

[6] Kun Luo, Zhenguo Wang, and Xiaoyan Lei. The cellular automata model
of sound propagations and its application in structural noise calculations.
Applied Acoustics, 182:108262, 2021.

[7] Friedrich Moser, Laurence J. Jacobs, and Jianmin Qu. Modeling elastic
wave propagation in waveguides with the finite element method. NDT
& E International, 32(4):225–234, 1999.

[8] H. Moura. Simulação da propagação de ondas acústicas através de uma
malha de guias digitais de ondas., 2006. Disssertação (Mestrado em
Engenharia Mecânica), UFU, Uberlândia, Brasil.

[9] H. Moura. Implementação em chip de sistemas celulares autômatos
dedicados à emulação da propagação de ondas acústicas em sistemas
fı́sicos., 2022. Monografia (Bacharel em Engenharia Eletrônica), UnB,
Brasilia, Brasil.

[10] Henrique G. Moura and Daniel M. Muñoz. Modeling wave propagation
using cellular automata on chip. In 34th IEEE Symposium on Integrated
Circuits and Systems Design (SBCCI), pages 1–6, 2021.

[11] G.M. Murphy. Ordinary Differential Equations and Their Solutions. Van
Nostrand, 1960.

[12] Daniel M Muñoz, Diego F. Sanchez, Carlos H. Llanos, and Mauricio
Ayala-Rincón. FPGA based floating-point library for CORDIC algo-
rithms. In 2010 VI Southern Programmable Logic Conference (SPL),
pages 55–60, 2010.

[13] Daniel M. Muñoz, Diego F. Sanchez, Carlos H. Llanos, and Mauricio
Ayala-Rincón. Tradeoff of FPGA design of a floating-point library for
arithmetic operators. volume 5, pages 42–52, Journal Integrated Circuits
and Systems, 2010.

[14] Masoud Shafiei, Naser Khaji, and Morteza Eskandari-Ghadi. An
adaptive cellular automata approach with the use of radial basis functions
for the simulation of elastic wave propagation. Acta Mechanica,
231(7):2723–2740, 2020.

[15] Julius O Smith. Physical modeling using digital waveguides. Computer
music journal, 16(4):74–91, 1992.

[16] Holger Thies. Uniform computational complexity of ordinary differ-
ential equations with applications to dynamical systems and exact real
arithmetic. Graduate School of Arts and Sciences, University of Tokyo,
Tokyo, Japan, 2018.

julio
XI Southern Conference on Programmable Logic SPL2023 12

Streamlining FPGA Circuit Design and Verification
with Python and py4hw

David Castells-Rufas, Gemma Rotger
Universitat Autònoma de Barcelona (UAB)

Cerdanyola del Vallés, Spain
0000-0002-7181-9705, 0000-0002-9538-5278

David Novo
Laboratoire d’informatique, de robotique

et de microélectronique de Montpellier (LIRMM)
Montpellier, France

0000-0002-5510-4152

Abstract—Classic hardware design languages, such as VHDL
and Verilog, were born more than 30 years ago to improve
the productivity of circuit design offered by manual schematic
drawing. Over the years, the effort of Digital Hardware Design
has shifted from circuit design to circuit verification. Although
classic HDLs have been extended to adapt to this changing
scenario, they have a hard time to cope with the complexity
demanded at the design and verification stages. Radical changes
incorporating high-level software programming languages in the
design and verification processes seem inevitable. Accordingly,
many new HDL proposals are already based on Python. In this
paper, we present a novel Python-based HDL framework that
tries to address some of the limitations of current Python-based
HDLs with a special focus on verification and education.

Index Terms—FPGA, Verilog, Python

I. INTRODUCTION

The Python programming language has become very pop-
ular in the scientific community due to its simplicity, cross-
platform support, easy learning curve, and a multitude of exist-
ing and ever-increasing functionality that is easily distributed
through Internet-based setup infrastructures like PyPi and
Conda. Hardware design languages (HDLs) like VHDL and
Verilog were born as domain-specific languages to address the
productivity limitations of manual schematic drawing. Modern
digital circuits are generally designed using a compositional
methodology, where circuits are subdivided into simpler in-
terconnected blocks. This division is repeated until simple
enough circuits, which are part of the platform primitives, are
obtained.

The benefit of using a domain-specific language was jus-
tified when Object-Oriented (OO) languages were not main-
stream, and it was not easy to express the compositional struc-
ture of hardware with them. Now, General-Purpose Program-
ming Languages (GPPLs) can easily describe complex circuit
descriptions by instantiating smaller blocks. The evolution
of HDLs has moved the attention to the circuit verification
features of the languages. We argue that, instead of trying
to transform the domain-specific HDLs into GPPLs, it makes
more sense to complement existing GPPLs to be able to
describe Hardware blocks and provide a simulation infras-
tructure that allows complex verification. Several proposals
have followed this approach. To name a few: SystemC [1]
based on C/C++, JHDL [2] based on Java, and Chisel [3]
based on Scala. We believe that some roadblocks hinder their

wide adoption. While Java is still popular in the business
domain, it is not so popular among the scientific and electrical
engineering communities. Also, even with the relative success
of Chisel, Scala is not a very popular language. On the
other hand, while C/C++ is very popular in the scientific and
electrical engineering communities, the language suffers from
some limitations (e.g. poor introspection) that makes it less
attractive to become the center of an HDL framework.

Despite the well-known performance limitations, Python
still offers some compelling features to be the base of an
HDL framework. There have been several proposals based on
Python in the literature [4]–[9], but, they lack some features
like visualization, interactive simulation, and, in some cases,
they have an unclear separation between hardware design
styles. These features are part of our proposed framework
py4hw and could be incorporated into some of the other
Python-based tools. As part of our commitment to the Open
Hardware movement [10] and to improve education in Digital
Hardware Design, we have made our tools available on both
GitHub and PyPI under the GPL 3.0 license. We believe in
the importance of open access to tools and resources for the
advancement of the field, and we hope that our contributions
will support the broader community of hardware designers and
educators.

The organization of the paper is as follows: In Section II,
we describe the main aspects of the py4hw framework. Special
focus is given to the flexibility aspects of the framework
in Section III and the visualization features in Section IV.
Section V details the verification features of the framework.
We describe the strength of the framework for education in
section VI. Before concluding, Section VII analyzes related
work and compares it with the current proposal.

II. py4hw

The functionality base of Python is far superior to that
available in Verilog/SystemVerilog. Hence, using Python in
py4hw provides an excellent foundation for elaborating com-
plex hardware, defining of simulation stimuli, and developing
verification testbenches. py4hw is specially optimized for the
design of synchronous digital circuits, and it is influenced by
JHDL [2].

The evolution of hardware design has consolidated three
main design styles:

julio
XI Southern Conference on Programmable Logic SPL2023 13

• Structural: description of blocs and their connections
• Register transfer level (RTL): description of the response

of circuits at certain events (signal activation or clock
edge)

• Sequential: Description of processes using a Von-
Neumann-like approach where actions occur by the exe-
cution of an algorithm

Many Python-based HDLs mix design styles (as Chisel also
does) or use non-intuitive methods to create hardware circuits,
introducing unnecessary confusion to the designer. py4hw aims
to differentiate between design styles and avoid language
constraints that limit the freedom to create any circuit.

py4hw follows and Object Oriented (OO) design style.
Every circuit (equivalent to Verilog module) is modeled by
a Python class, which can be instantiated by other circuits.
In Verilog, modules have two different sets of constructor-
arguments, a mandatory set for the input and output wires,
and an optional set for module parameters. In py4hw, the
only mandatory constructor-arguments are the parent circuit
and the name of the instance. py4hw maintains a hierarchical
object model with parent-child relations. Each circuit instance
contains a link to its parent, and a dictionary of children
indexed by instance name. The top-level entity of the hierarchy
is the HWSystem object. Thus, circuit constructors can have
an arbitrary number of additional parameters, and the interface
of the circuit (inputs and outputs) is built during runtime
avoiding any static interface definition. The clock is implicit.
All circuits have an assigned clock driver which is normally
inherited from the parent circuit. However, multiple clock-
drivers can be used, and there is support for gated clocks by
using a special clock-driver object.

A fundamental class is the Wire class. An instance of the
Wire class represents a signal that connects one source with
one-or-more sinks. Wires have a width, a name, and a parent
circuit that must be specified during creation. A significant
difference with other HDLs is that wires are indivisible.
Extracting specific bits from a wire, concatenating wires, or
obtaining a range of wires from a wire require to use specific
circuits. All circuits inherit from the class Logic, which
provides some basic methods to create the circuit interface.
Structural, RTL, and sequential design styles are supported in
py4hw. The structural design style is based on the instantiation
of objects from previously defined classes in the constructor
of the class. The following code illustrates how to design a
1-bit Full Adder circuit with a structural design style.
class FullAdder(Logic):

def __init__(self, parent, name, x, y, ci, s, co):
super().__init__(parent, name)
interface definition
x = self.addIn('x', x)
y = self.addIn('y', y)
ci = self.addIn('ci', ci)
s = self.addOut('s', s)
co = self.addOut('co', co)
internal wires
w1 = self.wire('w1',1)
w2 = self.wire('w2',1)
w3 = self.wire('w3',1)
instances

Xor2(self, 'g1', x, y, w1)
Xor2(self, 'g2', w1, ci, s)
And2(self, 'g3', w1, ci, w2)
And2(self, 'g4', x, y, w3)
Or2(self, 'g5', w2, w3, co)

py4hw also supports RTL design style by allowing to
use the behaviour of the circuits using simple Python code.
Two possible circuit types are supported: combinational and
sequential. In both cases, the constructor of the class is used to
define the interface and save their wires into the properties of
the object. Combinational behavioral circuits must implement
the propagate method. The following code illustrates how
the previous Full Adder circuit can be described by using a
combinational behavioural implementation.
class FullAdder(Logic):

def __init__(self, parent, name, x, y, ci, s, co):
super().__init__(parent, name)
interface definition
...

def propagate(self):
v = self.x.get() + self.y.get() + self.ci.get()
self.s.put(v % 2)
self.co.put(1 if v > 1 else 0)

Sequential behavioral circuits are defined by implementing
the clock method. The following code illustrates how to
implement a simple Finite State Machine (FSM) with two
states.
class FSM(Logic):
def __init__(self, parent, name, r):
super().__init__(parent, name)
self.r = self.addOut('r', r)
self.state = 0

def clock(self):
if (self.state == 0):

self.r.prepare(1)
self.state = 1

elif (self.state == 1):
self.r.prepare(0)
self.state = 0

Sequential design style can be implemented by combining
Python coroutines with the implementation of clock method.
With this approach, the circuit enters a coroutine on object
creation which is automatically blocked after a first yield
statement is reached. The clock method must call the next
method of the coroutine so that the sequential process ad-
vances until the next yield statement is found. A similar
approach is used in cocotb [11] and, from the programmer’s
perspective, is very similar to SystemC’s sequential clocked
processes (SC CTHREAD), which used sc_wait statement
instead of yield.

py4hw embeds a cycle-based simulator. The simulator is
responsible to propagate the wire values across the circuit and
update the state. Using behavioral models instead of structural
ones is a known technique to speedup simulation. In the
behavioral FullAdder example, the simulator requires a single
method invocation to compute the outputs of the circuit. On
the other hand, using structural design for the same circuit
requires the invocation of the behavioural models of all its
hierarchical descendants, which takes more time.

julio
XI Southern Conference on Programmable Logic SPL2023 14

Simulation time can be advanced programmatically. This
can be used in combination with state analysis to perform
advanced verification and visualization strategies. This strategy
was used in [12] to provide a rich visualization of the the
state of a RISC-V processor while executing an compiled
application. Several Python libraries (pyelftools, capstone,
tkiner, ...) were used to provide a rich user experience.

py4hw generates Verilog from the circuit descriptions. Since
the whole circuit hierarchy is maintained in memory, the RTL
generation phase only has to traverse the circuit hierarchy
and decide which method to apply to generate the equivalent
Verilog code for each element of the hierarchy. Structural
circuits are directly translated into structural Verilog code.
Behaviourally modelled circuits are transpiled into Verilog.
Their defining method (either propagate or clock) is an-
alyzed using introspection to obtain the Abstract Syntax Tree
(AST) of the method’s source code. Several transformations
are applied until the AST can be emitted as a valid Verilog.
Calls to external libraries (such as NumPy) can not be used
inside behavioural models that are synthesized. On the other
hand, there is no restriction to use them on constructors of
Structural circuits and behavioral models as simulation stimuli.
Using Python’s introspection eliminates the need for external
libraries that would otherwise be necessary in languages like
C/C++ to parse source code.

III. CIRCUIT FLEXIBLITY

The interface of Verilog circuits is fixed by design. This
limits the ability to build complex circuits and requires GP-
PLs to assist EDA tools when such flexibility is needed. A
often occurs when building a memory-mapped multiplexed
bus to communicate a bus-master processor with a flexible
number of bus-slave devices. Although the generative Verilog
statements could assist in generating the module logic, the
inflexibility of the language with respect to the circuit interface
prevents the creation of a generic module. A work-around
solution could be to design for the worst-case scenario by
estimating the maximum number of inputs and leaving wires
unconnected. However, this approach can lead to long and
error-prone code due to the large number of wires. While
SystemVerilog provides some relief with interface and
modport statements, the issue of static interfaces is not fully
resolved.

On the contrary, this use-case is extremely simple to im-
plement in py4hw. First, because the circuit interface can
be created during runtime by using addIn and addOut
methods. Second, because semantically related signals can
be grouped in any kind of Python data structure (such as a
list, a dictionary, or a specific Interface class provided by
py4hw) and passed to the circuit constructor. The following
code illustrates a possible implementation.
class MultiplexedBus(Logic):
def __init__(self, parent, name,

master, slaves):
super().__init__(parent, name)

self.addInterfaceSink('master', master)

for i, slave in enumerate(slaves):
self.addInterfaceSource('slave{}'.format(i),

slave.if)
addr = slave.addr
...

But interface flexibility is not the only required flexibility.
Modern HDLs should also be able to support the manipulation
of the circuit. Some intermediate low-level representations
(IRs) have been proposed to describe hardware concepts. After
the success of the LLVM infrastructure [13] in the Software
world, it is expected that Hardware design flows can benefit
from an infrastructure that allows the manipulation of the
design descriptions in a number of optimization phases. The
most relevant IRs are FIRRTL [14] and LLHD [15]. IRs
provide a framework where manipulation is possible because
in the original context (e.g. Verilog, C/C++, etc.) it was not.
However, the in-memory object hierarchy of py4hw designs
allows the unrestricted manipulation of the system making the
IR phase unnecessary. Not all Python-based HDL frameworks
support this flexibility. For instance, the MyHDL method to
create circuits based on generators is not very adequate to
implement this manipulation.

In py4hw, the circuit hierarchy can be easily traversed
and manipulated, adding or removing ports from a circuit
or creating new hardware. As an example, the following
Python code manipulates a circuit to insert a global enable
signal. The intended goal is that the enable signal of every
register found in the circuit hierarchy is controlled by the
global enable signal. The code checks whether each register
uses the enable signal. If it does not, it adds it and connects it
conveniently. Otherwise, it inserts a new and2 gate combining
the former enable signal with the global one. Furthermore, the
global enable signal must be included in the interface of all
pertinent circuits in the hierarchy.

class GlobalEnableInserter:
i = 0
def transform(self, obj, gen):
anyclk = False
children = set(obj.children.values())

for child in children:
if (child.isClockable()):
if (isinstance(child, Reg)):
enable = child.e
anyclk = True

if (enable is None):
child.addIn('e', gen)

else:
name = 'global_ena_{}'.format(self.i)
self.i += 1
new_enable = obj.wire(name)
And2(obj, name, enable, gen, new_enable)
child.reconnectIn('e', new_enable)

elif (len(child.children) > 0):
anyclk |= self.transform(child, gen)

if (anyclk):
obj.addIn('global_enable', gen)
return True

else:
return False

julio
XI Southern Conference on Programmable Logic SPL2023 15

IV. VISUALIZATION

Circuit visualization is important to understand the struc-
ture of a circuit and can be very helpful during validation,
as some structural errors can be more easily identified by
inspecting diagrams instead of source code. Logic diagrams
are extensively used in education, and it also common practice
to use them during the conceptualization of Hardware systems.
Since complex circuits are designed in a hierarchical way,
visualization tools require to be able to navigate the hierarchy
and visualize the connection between all the elements of the
system.

FPGA EDA tool manufacturers have included VHDL and
Verilog circuit visualization features. However, visualization
has to be elaborated by a process that analyzes the whole cir-
cuit and the user has little control to automate the generation of
such diagrams. Other popular HDLs like Chisel [3], SystemC
[1], or MyHDL [4] do not provide any circuit visualization
feature.

On the other hand, JHDL [2] had rich visualization features,
including interactive simulation with value annotation in the
circuit schematic, which was very useful to debug circuit
behavior. The HWT Python-based HDL library also includes
visualization features.

py4hw has some generic goals regarding the visualization
of circuits:

• Any part of the circuit hierarchy should be visualizable
• Circuit visualization should create a manipulable object

hierarchy
• The user/designer should be able to control the details of

the visualization process, from algorithmic aspects (like
layout algorithms) to low-level details (such as colors and
line widths).

• Visualization should allow multiple final targets, such as
GUIs, images, or Jupyter Notebooks.

In py4hw, visualization is controlled by the Schematic
class, which implements a circuit layout algorithm from
scratch. An schematic diagram works with a circuit element
from the hierarchy. It is not necessary to process all the circuit
to generate a visualization from a node. The layout algorithm
is responsible for placing input ports, child instances, and
output ports of the circuit in the drawing canvas and route
the connections among them.

The currently supported targets are matplotlib and
tkinter canvas. The Matplotlib target is very useful
to integrate circuit visualization if jupyter notebooks. Figure 1
depicts how a full adder circuit schematic is rendered in a
jupyter notebook. The tkinter target is useful to visualize
any circuit of the hierarchy in an interactive graphical user
interface. This is actually used in the interactive simulation
workbench that will be described in the following section.

V. VERIFICATION

Simulation is fundamental for verification. Simulation con-
sist on evaluating how the system evolves over time under
controlled conditions. Simulation sessions require a circuit

Fig. 1. Schematic visualization of a combinational circuit in a Jupyter
notebook

design under test (DUT), some stimuli to inject to the circuit,
and the ability to observe the behaviour of the DUT. A test-
bench consists of a combination of these three items.

In Verilog, observability is based on printf-like messages
and the generation of VCD trace files that record the activity of
circuit wires for later inspection using waveform viewers such
as the popular gtkwave tool. With SystemVerilog, additional
formal methods like assertions were introduced.

In py4hw, stimuli can be created by several means. The most
simple way is by using the Constant of Sequence circuits
that allow to specify a constant value or a repetitive sequence
of constant values respectively. For slightly more complex
stimuli it is recommended to create a stimuli class using a
sequential behavioral design style to specify inputs. When
higher complexity stimuli is required, behavioural models
using coroutines can be the best option.

The observability of wires in py4hw can be provided by
multiple ways. First, wire information can be collected using
the Waveform class and later displayed (see figure 2). The
Scope class provides printf-like message outputs. Printf-like
messages can also be embedded into user-defined circuits,
either to debug the circuit creation phase in the constructor
of structural circuits, or by providing info on the simulation
progress on behavioral circuits. However, this approach is
only recommended during early debuging phases and it is
encouraged that these messages are removed from stable cir-
cuits to minimize the verbosity of systems during simulation.
Assertions are easily supported either by using exceptions or
assert statements.

Fig. 2. Waveform visualization in Jupyter notebook

The simulator embedded in py4hw is cycle-based [16]. The
simulator has a flattened view of all the primitive behavioral
elements of the system. When the simulator is initialized

julio
XI Southern Conference on Programmable Logic SPL2023 16

Fig. 3. Interfactive Workbench for a Floating Point adder circuit. We can
simulate step by step. Left pane shows the hierarchy of the circuit. The top
right pane has the interface of the circuit with the current signal values. The
bottom right pane shows the schematic of the circuit.

all the elements are classified either being combinational
or sequential. Combinational circuit chains are topologically
sorted so that they can be correctly evaluated in sequence.
This is possible as no asynchronous loops are allowed. In
this way, no event propagation is needed, and circuits are
only evaluated once. After evaluating combinational circuits,
sequential circuits can be evaluated in any arbitrary order.

In py4hw, each wire can have an arbitrary width. In other
HDL languages based on Java or C/C++, the wire width is
limited by design because the underlying simulation infras-
tructure is using an integer type (64 bits, typically). This is
not the case in Python as integers have arbitrary precision.

Modern design techniques require a systematic verification
of all created circuits. In SystemVerilog, much effort was
devoted to address complex verification. Moreover, the uni-
versal verification methodology (UVM), which is based on
these SystemVerilog features, was proposed as an standard
for the systematic verification of circuits. While unit testing,
system testing, and continuous integration can be relatively
new concepts to many Hardware designers, they have been
very commonly used in complex software projects. Actually,
there are several testing frameworks for Python. In py4hw
we use Pytest to do unit testing. This allows to define
systematic testing of all the circuits by using assertions,
random stimuli, and equivalence checking.

After a bug is detected by using unit tests or system tests
it is necessary to identify the source of the error. This can
be done by analyzing waveforms in the classical post-mortem
approach. However, an alternative method based on interactive
simulation can be more efficient. py4hw provides an interactive
workbench (see figure 3) in which the user/designer can
navigate for the circuit hierarchy and view the circuit structure
together with the values of the circuit interface. In addition
to these methods custom state visualization can be built to
transform the circuit state into a higher-level abstraction so
that it is easy to identify.

VI. EDUCATION

Digital circuit design for FPGAs has historically required
different tools from several vendors to design, synthesize,

simulate and execute the designs. With the proliferation of
Open-Source tools the cost aspect of the problem has been
minimized, however, the user/designer still needs several tools
to design and verify the circuit. Education at all levels is
increasingly promoting self-paced courses and remotely ac-
cessible infrastructure. This is challenging in Digital Design
courses due to the required infrastructure.

Jupyter notebooks are an effective method to combine docu-
mentation with software execution. Its use is being introduced
in many engineering courses [17] either as part of self-
paced courses or laboratory exercises. There a some consensus
among digital design education community that students must
visualize the circuits they can design with HDLs to fully
understand the implications of their decisions. py4hw exercise
materials have been prepared to use in a Digital Design Course
so that the student can test his ability to create his/her circuits
and automatically verify if they fulfill the requirements of
the exercise. At the same time, a visualization of the created
hardware is presented and the equivalent Verilog code is
generated. Moreover, the student can run the exercises with the
only requirement of a web browser, as the jupyter notebook
using the py4hw framework can run on a Binder or Collab
remote infrastructure.

VII. RELATED WORK

There are many proposals using Python for Hardware de-
sign. In Table I we list some of the most relevant.

MyHDL [4] is one of the first and well-known proposals to
use Python for Hardware design. It was created in 2003 and
has 858 starts in GitHub. Although it has an active community,
the project seems to be loosing steem and entering a decay
phase as can be observed by the last PyPi release date. One
of the drawbacks of MyHDL is that component creation was
based on generator functions. Each module is described as
a function that creates logic entities that are returned as list
of objects. Decorators are used to ease the definition of such
functions. Hierarchy was hard to obtain in the initial releases.
New releases are moving to an approach were hierarchy is
maintained, but the momentum of the framework will make
the change slow. PyRTL has a similar issue with its structure,
as it opts not to use classes for circuit creation and instead aims
to simplify usage by concealing hardware creation details.

According to Github starts, the most popular Python-based
frameworks are Migen and its derived Amaranth. Their draw-
back are that they promote a syntax that simultaneously
combines different design styles in the source code, which
is (from our experience) a source of confusion for many
undergraduate students. Moreover, according to the last PyPi
release date, development halted in 2019 for Migen, and 2021
for Amaranth.

The project with the most recent PyPi releases is PyMTL3
[8]. It provides different clear design styles which are anno-
tated with function decorators. It also maintains a hierarchy
that allows applying transformations as proposed by IR tools.
In addition, it is actively used in hardware design courses
at Cornell University and Boston University. An interesting

julio
XI Southern Conference on Programmable Logic SPL2023 17

approach is followed by PyLog [9], which provides automatic
deployment in some supported FPGAs. However, the language
hides the details of hardware structure making it less useful
for education. Moreover, it is not distributed through PyPi.
HWT [7] covers many aspects of Hardware design. Its main
drawback might be the fragmentation of the functionality in
several repositories.

None of the analyzed frameworks provide circuit visualiza-
tion, except for HWT. HWT has a good visualization tool that
can be inserted in Jupyter. It is based on the ELK (Eclipse
Layout Kit), which is based on Java and is automatically
transpiled in Javascript using GWT. Consequently, none of
them provide a GUI for interactive simulation, which is very
useful for education.

TABLE I
OPEN SOURCE PYTHON-BASED HDL FRAMEWORKS

Framework Launched Last PyPi
Release GitHub Repository Stars

MyHDL [4] 2003 6/2019 myhdl/myhdl 886
PyRTL [6] 2015 9/2021 UCSBarchlab/PyRTL 173

HWT 2016 7/2021 Nic30/hwt 160
Migen 2019 11/2019 m-labs/migen 987

PyMTL3 [8] 2020 5/2022 pymtl/pymtl3 254
PyLog [9] 2021 hst10/pylog 39
Amaranth 2021 12/2021 amaranth-lang/amaranth 1.1k

In addition to these frameworks there are other related
Python-based projects with interesting results. PyVerilog [18],
available at PyHDI/Pyverilog is not an HDL framework but it
is a library for Verilog analysis providing the ability to parse
and manipulate Verilog code.

A very relevant work is cocotb [11], with 1.1k stars in
GitHub and a last PyPi release in February 2022. Cocotb
focuses on testbench generation from Python to inject stimuli
into standard HDL projects. To do so, it basically provides a
simulation engine that interacts with external simulators (such
as QuestaSim, Verilator, etc) and uses Python coroutines to
model stimuli generators.

VIII. CONCLUSION

Classic HDL languages are incorporating features of stan-
dard programming languages to cope with the requirements of
hardware design and verification. Alternatively, hardware cre-
ation with software programming languages might be simpler
and opens the door to many new engineers to create Hardware.

Currently, Python is one of the most popular programming
languages with a rich ecosystem of tools and libraries and a
big developer community. There have been several proposals
to use Python for hardware design.

Many of them take a very high-level description approach
hiding the details of hardware design. In digital design educa-
tion courses, it is necessary to be able to control the created
hardware with good detail and be always clear about what
design style we are using. It is also fundamental to visualize
the results as soon and as often as possible. Even if using

high-level synthesis, the transformations must be identifiable
and explainable to students.

py4hw tries to address these issues by providing a low-level
Python library for the compositional creation of digital circuits,
their verification and visualization using modern tools such as
interactive GUIs and jupyter notebooks. By eliminating the
need for third-party software installations and offering early
visualization of designed circuits, students have less entry
barriers and iterate faster with digital hardware design.

REFERENCES

[1] P. R. Panda, “Systemc: a modeling platform supporting multiple design
abstractions,” in Proceedings of the 14th international symposium on
Systems synthesis, 2001, pp. 75–80.

[2] P. Bellows and B. Hutchings, “Jhdl-an hdl for reconfigurable systems,”
in Proceedings. IEEE symposium on FPGAs for custom computing
machines (Cat. No. 98TB100251). IEEE, 1998, pp. 175–184.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in DAC Design automation conference 2012.
IEEE, 2012, pp. 1212–1221.

[4] J. Decaluwe, “Myhdl: a python-based hardware description language.”
Linux journal, no. 127, pp. 84–87, 2004.

[5] “Migen (milkymist generator), a python toolbox for building complex
digital hardware.” [Online]. Available: https://github.com/m-labs/migen

[6] D. Mirza, D. Dangwal, and T. Sherwood, “Pyrtl in early undergraduate
research,” in Proceedings of the Workshop on Computer Architecture
Education, 2019, pp. 1–8.

[7] “Hwtoolkit (hwt) the library for hardware development in python.”
[Online]. Available: https://github.com/Nic30/hwt

[8] S. Jiang, P. Pan, Y. Ou, and C. Batten, “Pymtl3: a python framework
for open-source hardware modeling, generation, simulation, and verifi-
cation,” IEEE Micro, vol. 40, no. 4, pp. 58–66, 2020.

[9] S. Huang, K. Wu, H. Jeong, C. Wang, D. Chen, and W.-M. Hwu, “Pylog:
An algorithm-centric python-based fpga programming and synthesis
flow,” IEEE T COMPUT, vol. 70, no. 12, pp. 2015–2028, 2021.

[10] F. Hannig and J. Teich, “Open source hardware,” Computer, vol. 54,
no. 10, pp. 111–115, 2021.

[11] B. J. Rosser, “Cocotb: a python-based digital logic verification frame-
work,” in Micro-electronics Section seminar. CERN, Geneva, Switzer-
land, 2018.

[12] A. Hammani Abbasi, “Implementació d’un entorn interactiu educatiu
per a la docència d’arquitectures risc-v,” 2021.

[13] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[14] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson et al., “Reusability is firrtl ground:
Hardware construction languages, compiler frameworks, and transforma-
tions,” in 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2017, pp. 209–216.

[15] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “Llhd: A multi-
level intermediate representation for hardware description languages,”
in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020, pp. 258–271.

[16] S. Palnitkar and D. Parham, “Cycle simulation techniques,” in Proceed-
ings. 1995 IEEE International Verilog HDL Conference. IEEE, 1995,
pp. 2–8.

[17] A. Cardoso, J. Leitão, and C. Teixeira, “Using the jupyter notebook
as a tool to support the teaching and learning processes in engineer-
ing courses,” in International Conference on Interactive Collaborative
Learning. Springer, 2018, pp. 227–236.

[18] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design
processing toolkit for verilog hdl,” in International Symposium on
Applied Reconfigurable Computing. Springer, 2015, pp. 451–460.

https://github.com/myhdl/myhdl
https://github.com/UCSBarchlab/PyRTL
https://github.com/Nic30/hwt
https://github.com/m-labs/migen
https://github.com/pymtl/pymtl3
https://github.com/hst10/pylog
https://github.com/amaranth-lang/amaranth
https://github.com/PyHDI/Pyverilog
https://github.com/m-labs/migen
https://github.com/Nic30/hwt
julio
XI Southern Conference on Programmable Logic SPL2023 18

Open-source SoC-FPGA Platform for Signal
Processing

1st Matı́as Javier Oliva
Grupo de instrumentación Biomédica Industrial y Cientı́fica

Universidad Nacional de La Plata
La Plata, Argentina

matias.oliva@ing.unlp.edu.ar

2nd Pablo Andrés Garcı́a
Grupo de instrumentación Biomédica Industrial y Cientı́fica

Universidad Nacional de La Plata
La Plata, Argentina

3rd Enrique Mario Spinelli
Grupo de instrumentación Biomédica Industrial y Cientı́fica

Universidad Nacional de La Plata
La Plata, Argentina

4th Alejandro Luis Veiga
Grupo de instrumentación Biomédica Industrial y Cientı́fica

Universidad Nacional de La Plata
La Plata, Argentina

Abstract—Systems known as SoC-FPGAs have experienced a
growing popularity in recent years. This devices integrate field
programmable gate arrays with elements such as microproces-
sors, PLLs and embedded memory blocks. The advantages of this
type of systems are clear: great reconfigurability, performance,
and energy efficiency, but they come with an negative side:
programming and optimizing the applications that use them
remains a long and complicated process. In particular, real-
time signal processing at high frequencies is an application that
can clearly benefit from the advantages of SoC-FPGAs, but
the complex workflow assosiated with them usually prevents
the designers from taking advantage of its capabilities. In this
work, an open source SoC-FPGA platform, specifically intended
for signal processing is presented, with the aim of alleviating
this workflow. The platform structure is described, specifying
the places where the designer may implement their algorithms,
and then its operation is demonstrated by acquiring a signal
at a maximum sampling frequency of 65 MHz and passing it
through a 32th order FIR filter, verifying that the it meets it’s
expected theoretical response. The whole system can operate at a
maximum frequency of 85 Mhz, has a latency of 16 clock cycles,
and uses less than half of the resources of a Cyclone V device.

Index Terms—SoC-FPGA, signal-processing, open-source, fil-
tering .

I. INTRODUCTION

In recent years, there has been a growing demand of compu-
tational capacity. This demand has motivated the development
of new architectures and computational systems among which
solutions based on field programmable gate arrays (FPGAs)
stand out. These devices are highly re configurable, with high
performance and energy efficiency, and the chips that inte-
grate them have evolved to include different sub-systems that
complement their capabilities. In this process, systems known
as SoC-FPGAs have emerged, which integrate an FPGA with
embedded memory blocks, phase locked loops (PLLs), digital
signal processing blocks (DSPs) and even microprocessors in
a single chip [1] [2].

In particular a SoC-FPGA system with an embedded mi-
croprocessor is an interesting platform for implementing high

speed signal processing systems, with the FPGA in charge of
the real-time processing, including the control of the analog
signal acquisition and generation systems, and the micropro-
cessor controlling the operation and the user interface. This
guarantees complete control of the signal at clock transfer
level, while keeping the user interface friendly and versatile.

The usual workflow when designing an application on a
SoC-FPGA system begins with hardware design at register
transfer level (RTL) in some hardware description lenguage
(HDL) like Verilog or VHDL, with the assistance of some
simulation tool for its verification. Special care must be taken
when elements such as PLLs or DSP blocks are needed, since
the HDL must be written correctly for the compiler to be able
to infer them. Compilers provided by different manufacturers
(Intel-Altera’s Quartus or Xilinx’s Vivado, for example) are
then used to generate the “bitstream” needed to program the
FPGA, which has to be tested experimentally to solve possible
problems that have not appeared in simulation. Additionally, in
SoC-FPGAs that include a microprocessor, the programming
of this processing element must be done independently, with
code in some high-level language such as C, C++, Python,
etc. This code must be compiled for the target microprocessor,
either by trans-compiling it with vendor-supplied tools, or by
compiling it natively on the microprocessor. Finally the whole
system must be verified. This long and complicated process
requires designers highly skilled in digital design and in the
particular architecture of the target platform [3].

In order to alleviate this workflow, High level synthesis tools
(HLS) have emerged [4] [5] [6] [7]. This tools allow the gener-
ation of HDL code from C/C++/OpenCL code. Although these
languages generate sequential programming codes, they allow
parallelized algorithms to be implemented using computation
directives. This greatly simplifies the design of algorithms, but
does not simplify the rest of the steps involved in the system’s
design.

In this article an architecture of a SoC-FPGA system,
specifically intended for signal processing, will be described.

julio
XI Southern Conference on Programmable Logic SPL2023 19

The design includes digital an analog signal inputs, a model for
the processing stages of the system, and the means to control
the signal flow and retrieve the results of the processing.
Its objective is that the programmer should only concentrate
on the application of the signal processing algorithms, either
writing HDL or using HLS tools, without worrying about the
integration of the different sub-systems. In order to test the
system a 32th order finite impulse response (FIR) filter with
re configurable coefficients was implemented.

The design is open source, licensed under the terms of
the MIT license, and available at [8]. It was implemented
on an Intel-Altera Cyclone V SoC-FPGA [9], mounted on a
DE1-SoC development kit, provided by Terasic [10]. Verilog
was used for HDL programming, with the addition of some
free licenced Intel-Altera intellectual property (IP) blocks, and
tools written in C/C++ and C# were developed for the control
of the operation.

II. SYSTEM DESCRIPTION

The proposed design is schematically shown in Fig. 1.

A. Control Stage

The control stage includes the hardware designed in the
FPGA, which contains elements to configure the processing
operation, control its speed and flow, and collect available
results, and the control element itself. This can be a mi-
croprocessor integrated on the SoC or a “soft” processor,
implemented in the FPGA fabric, depending on the availability
in the target platform and the designer’s needs. For the latter,
the free version of the NIOS 2 processor, a 32-bit RISC
processor optimized to save area on the FPGA [11], was
implemented, and to communicate the design with the external
processor, if available, the “Lightweight-axi-bus” was used.
In the Cyclone V platform this processor is an ARM-Cortex
A9. Hardware abstraction layers (HAL), written in C/C++, are
provided for both modes of operation.

The main system’s clock is generated trough a PLL, avail-
able inside the Cyclone V chip. Two IP blocks provided by
Intel-Altera are used to instantiate it: “Altera PLL” [12] and
“Altera PLL reconfig” [13]. These blocks allow to generate,
from a 50 MHz clock, one with a frequency between 1 and 65

Fig. 1. Design’s general structure.

Fig. 2. Control module.

MHz. Additionally, a clock divider is provided, to implement
lower frequencies. The enable, reset, and termination signals
are used to control the flow of the process.

To parameterize the operation at run time a parameter
control stage is included. Some examples where this may be
useful are when the user wants to control the number of cycles
during which a signal is integrated, or the coefficients of a
filter.

The results of the processing enter the module in 32 or 64 bit
formats, and are stored in First in first out (FIFO) memories.
In addition to the data to be stored, the processing logic must
include a “data valid” signal, which is set high on every clock
cycle that the result is valid. This scheme is used at all stages of
processing to ensure its correct synchronization, and is known
in the Intel-Altera documentation as an “Avalon Streaming”
interface. It’s use is not limited to Altera’s hardware.

FIFO memories were implemented using Altera IP blocks,
with an “Avalon Streaming” input interface, and an “Avalon
Memory Mapped” output interface [14]. This input interface
allows directly adapting the memories with the designer’s own
logic, as long as it complies with the rules described earlier.
This text will not delve into the “Avalon Memory Mapped”
interface, other than to say it is the one that allows the control
element to correctly read the memories. The interested reader
can find more about this interfaces in [15].

B. Signal source stage

The signal source stage, represented on Fig. 3, controls the
input signals for processing. These can be digital, for testing
proposes, or analog, incoming from some analog to digital
converter (ADC).

1) Digital Signal: The digital sinusoidal signal is generated
from a look-up table, and optionally contaminated with uni-
form noise, through a pseudo-random sequence. The module
provides a signal sample on each rising clock edge on which
the enable signal is high. The designer can configure the
number of points per cycle used to generate the sinusoid, the
method to obtain the pseudo-random sequence that simulates
the uniform noise, and its amplitude.

The pseudo-random sequence can be generated using an
algorithm called linear feedback shift register (LFSR) [16],

julio
XI Southern Conference on Programmable Logic SPL2023 20

Fig. 3. Signal source module.

or by a typical linear congruential generator, given by the
equation 1. In this equation the operator % represents the
modulus operation, and the parameters used are: c = 1,
a = 69069, m = 232, which are ones used by old versions of
the GNU C library (glibc) [17].

Ni+1 = (aNi + c)%m (1)

Once the pseudo-random sequence is generated, it is scaled
according to the requested noise amplitude and added to the
sinusoidal signal. In this way sinusoidal signals with different
levels of signal-to-noise ratio can be generated. This can be
useful to test the immunity of the different algorithms against
noise, for example.

2) Analog Signal: To obtain analog signals for further
processing two different ADC drivers are included. The design
allows them to be operated at different frequencies through
the clock circuitry and provides synchronization with other
modules through an Avalon Streaming Interface.

The first one is the ADC LTC2308 [18], a 12-bit reso-
lution and 500kHz maximum sample rate with eight mul-
tiplexed channels, usually included in Terasic platforms.
Its operation is through an SPI bus, which needs a clock
of 40 MHz of frequency at maximum. The sampling fre-
quency of this module can be configured by the designer.
The output signal, “data adc 2308”, includes its respective
“data adc 2308 valid” signal.

The other one is an AD9248 [19], a 14-bit resolution ADC
with 65 Msps maximum sample rate and two independent
channels, included in the “High-speed A/D and D/A Devel-
opment Kit” platform, also from Terasic [20] .This ADC is
controlled by a parallel interface, so it can operate at the
clock provided by the “clk adc hs”, which can be connected
to the system clock generated on the control stage. The output
signals “data adc hs a” and “data adc hs b” also include
their respective “data adc hs valid” signal.

Additionally, the system provides the driver for a digital to
analog converter: The AD9767 [21], which is a 125 Mmps,
14-bit resolution converter. This converter is operated through
a parallel interface, so it can be operated directly at “clk dac”
speed. The controller included in the design converts to analog

Fig. 4. Signal processing module.

each sample that enters the module through the “data in dac”
bus, as long as the “data in dac valid” signal is high. This
can be used for example to generate a waveform using an
internally stored lookup table, or to convert back to analog
the results of the processing on the incoming signal.

If other ADCs are to be connected to the system the de-
signer’s logic has to provide two signals: a “generic adc data”
bus, and a “generic adc data valid” wire, guaranteeing that
the driver provides a valid sample in the first one at each
clock cycle where the latter is in high state.

C. Signal processing stage

Regardless of which signal source is selected, data enters
the signal processing stage one sample at a time for each
clock cycle that “data valid” is high. This stage, which has
the input and output interface shown in Fig. 4 is where
the programmers may implement their algorithms. These can
be further subdivided on different sub-stages or sub-systems,
with each one working as an enablement for the next. The
stages can be parameterized at execution time, through the
different configurable parameters, and once the processing is
finished they must set the completion signal high to inform
the control module of the availability of the results. An extra
signal, represented as “ready to calculate” in Fig. 4, tells
other modules that the signal processing stage is ready to start
receiving the data samples. This is useful when this module has
to update parameters, or clean internal buffers before starting
to process the signal, for example.

III. SIGNAL PROCESSING EXAMPLE

In order to test the system a setup like the one shown in
Fig. 5 was implemented. In this configuration the signal is
generated with the SR865 lockin and acquired by the AD9248
at a configurable sampling frequency, up to 65 MHz. Then
it passes through a 32th order FIR filter, with configurable
coefficients. This filter follows the classic FIR filter equations,
shown in equation 2 where the bi are its coefficients, which
enter the processing module as 16 bit integer numbers through
the parameter control module.

Yn =

n∑
i=n−M

bixi (2)

The microprocessor implements a C++ program which con-
trols the operation and runs directly on its operating system:

julio
XI Southern Conference on Programmable Logic SPL2023 21

Fig. 5. Testing setup.

a Linux with an Ubuntu distribution. This program can be
executed from a terminal connected to a personal computer
through a serial interface, or directly from the SoC-FPGA, if
a monitor and keyboard is connected. For this configuration,
which is the one selected for this demonstration, a graphical
user interface (GUI) was designed in C#, and executed
through the Mono implementation of the .Net framework [22].
This GUI, shown in Fig. 6 allows the user to easily set up the
operation, and implements named pipes to configure the FPGA
through the C++ HAL.

Using this program the user can configure the filter coeffi-
cients and the sampling frequency. In this way the same system
can be used to implement different type of filters, at different
cut-off frequencies. Once processed, the signal is fed to the
DAC, in order to see the input and output signals together on
an oscilloscope, and also stored on the FIFO memories, so the
user can read them directly on his or her computer screen. The
GUI uses this information to plot fragments of the signal, so
the user can verify the operation without further equipment.
Finally, the SR865 lockin is used to measure the amplitude of
the output analog signal, in order to verify the operation of
the whole system.

The filter coefficients for this demonstration were selected
to implement low-pass and high-pass filter of different normal-
ized cutoff frequencies (0 < ω < 1.0). The coefficients enter
the processing module as 16 bit integer numbers, through the
parameter control module. To convert the coefficients provided
by some signal processing toolbox (Python’s numpy or Matlab,
for example), one simply has to multiply the coefficients by
216 and then round the number to the nearest integer. The final
cutoff frequency of the filter depends on the selected ω and
the sampling frequency, as shown in equation 3.

Fig. 6. Graphical User Interface.

Fig. 7. Testing Setup.

fcut = ωfsampling/2; (3)

A photo of the testing system is shown in Fig.7.

IV. RESULTS

A. Resource utilization

The resource utilization of the proposed system depends on
the election of the control element. If the microprocessor is to
be used considerable memory blocks can be saved, but more
logic elements are needed. On the other hand, if the Nios
processor is selected, the system needs a significant amount
of extra memory blocks, as the Nios 2’s program memory is
implemented directly on them. Finally, for the FIR demonstra-
tion, the system needs many DSP blocks, which are used to
implement the multiplications efficiently. It’s operation could,
however, be replaced by multipliers implemented with logical
elements, with an important reduction of time efficiency and an
increase in area. This could be a good choice for devices with
less embedded multipliers. The resource utilization summary
for each mode of operation is shown in Table I.

B. Timing measurements

For each system’s configuration the maximum achievable
clock frequency was calculated using the tools provided by
Intel Altera. In all the cases the maximum required frequency
for this demonstration (65 MHz) was achieved. In the cases
where the FIR filter is not implemented the achievable fre-
quency is limited by the few Altera’s IP used in the design.
In the cases were the FIR filter is implemented it’s the filter
who limits the frequency. If a greater speed is to be achieved
other filter architectures must be considered.

TABLE I
RESOURCE UTILIZATION

Resource With µP With NIOS Full system
LE (in ALMS) 3875 (12%) 2212 (7%) 6992 (22%)

Registers 5937 3170 11282
Memory blocks 262272 (6%) 1473536 (36%) 1342592 (33%)

RAM blocks 30 (8%) 195 (49%) 183 (46%)
DSP blocks 0 0 67 (77%)

Pins 157 (34%) 85 (19%) 157 (34%)
PLLs 1 (6%) 1 (6%) 1 (6%)

*Percentages calculated for Cyclone V 5CSEMA5F31C6N device
*Full system: µP + NIOS + 32th order FIR filter

julio
XI Southern Conference on Programmable Logic SPL2023 22

TABLE II
ACHIEVABLE CLOCK FREQUENCY

Nios processor µP FIR filter Achievable Frequency
✓ - - 115 MHz
✓ - ✓ 82.31 MHz
- ✓ - 97.82 MHz
- ✓ ✓ 87 MHz
✓ ✓ ✓ 85 MHz

As the data flows through the system it is registered in
several modules, implementing a pipeline. This pipeline allows
the maximum frequency of the clock to reach the levels
described earlier, but produces a latency in the output signal.
This latency can be estimated by following the signal path,
schematically shown in Fig. 8. Firstly the signal is acquired
by the AD9248, which has a pipeline delay of 7 clock cycles,
according to its data-sheet [19]. Then it is registered on
the ADC driver module, which takes 2 clock cycles. The
FIR filter registers the signal, then calculates the 32 required
multiplications and finally sums the results. This produces a
pipeline delay of 3 clock cycles. Then the DAC driver registers
the output data and conditions the signal, in a total amount of
3 clock cycles. Finally the AD9767 latchs the output, 1 clock
cycle later. The signal path sums for a total amount of 16
clock cycles.

To measure the latency in the signal the FIR filter was
bypassed, by tuning all its coefficients to 0 except of the
first one. This produces no change in the incoming signal,
except the delay produced by the system’s pipeline. Then
the time distance between the input and output signal was
measured with an oscilloscope, as shown in Fig. 9. For a
sampling frequency of 10 MHz a delay of approximately 1.6
µS was obtained, which is consistent with the estimated 16
clock cycles.

C. Filter’s response

With the setup described earlier, a low-pass and a high-pass
filter were implemented and tested. Both filters were designed
with a cutoff frequency of ω = 0.05, and a sampling frequency
of 1 MHz was selected. With these parameters a cutoff
frequency of 25 kHz is achieved, as expected from equation
3. The coefficients selected for the filters were obtained from
Python’s “numpy” signal processing toolbox.

With this configuration the amplitude of the transfer func-
tions | H(f) | of both filters was measured with the SR865,

Fig. 8. Signal path.

Fig. 9. Timing delay measurment.

and then compared with the theoretic transference of the filters.
The results are shown in Fig. 10, and Fig. 11.

CONCLUSIONS

In this paper a SoC-FPGA design intended for signal pro-
cessing was developed, providing a well structured design that
developers can follow. The result is an open-source system,
with options to adapt it to different Intel Altera’s SoC-FPGAs,
and with core concepts that are transferable to other vendors
architectures.

The design was tested implementing a 32th order FIR filter
that operates in real time with high frequency signals, a system
with speed and data throughput requirements restrictive for
most traditional microprocessors. The filter’s transfer charac-
teristic was measured using a SR865 lock-in, verifying that it
meets the expected theoretical response.

We believe that this work has a great number of industrial
and educational applications, as it simplifies the heavy work-
flow usually associated with these state-of-the-art embedded
systems. The future work on this subject will be related
with the design of other signal processing modules, with
the objective of improving this open-source signal processing
platform.

REFERENCES

[1] Yang, H., Zhang, J., Sun, J. et al. “Review of advanced FPGA archi-
tectures and technologies”. J. Electron.(China) 31, 371–393 (2014). doi:
10.1007/s11767-014-4090-x

[2] Monmasson, E. and Cirstea, Marcian. “FPGA Design Methodology for
Industrial Control Systems—A Review”. Industrial Electronics, IEEE
Transactions on. 54. 1824 - 1842. doi: 10.1109/TIE.2007.898281 (2007).

[3] Huang, Sitao; Wu, Kun; Jeong, Hyunmin; Wang, Chengyue; Chen,
Deming and Hwu, Wen-mei. “PyLog: An Algorithm-Centric Python-
Based FPGA Programming and Synthesis Flow”. IEEE Transactions on
Computers. 70. 1-1. doi: 10.1109/TC.2021.3123465 (2021).

[4] Intel Corporation. “Intel® High Level Synthesis Compiler: User Guide”.
[Online] https://www.intel.com/content/www/us/en/docs/programma
ble/683456/22-3/pro-edition-user-guide.html (accessed on November
2022).

[5] AMD- Xilinx. “Vitis High-Level Synthesis User Guide (UG1399)”.
[Online] https://docs.xilinx.com/r/en-US/ug1399-vitis-hls (accessed
on November 2022).

[6] Intel Corporation. “SDK Intel® FPGA para OpenCL” [Online] https:
//www.intel.la/content/www/xl/es/support/programmable/support-res
ources/design-software/opencl-support.html (accessed on November
2022)

julio
XI Southern Conference on Programmable Logic SPL2023 23

Fig. 10. Low-pass filter’s transference.

Fig. 11. High-pass filter’s transference.

[7] S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen, “Are We There Yet?
A Study on the State of High-Level Synthesis”, in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898-911, May 2019, doi: 10.1109/TCAD.2018.2834439.

[8] M. J. Oliva. “Signal processing in FPGA”. [Online] https://github.com
/ushikawa93/signal processing fpga (accessed on November 2022).

[9] Intel Corporation. “Cyclone V Device Overview”. [Online] https://ww
w.intel.com/content/www/us/en/docs/programmable/683694/current/cyc
lone-v-device-overview.html (accessed on November 2022).

[10] Terasic Technologies Inc. “DE1-SoC User Manual”. [Online] www.tera
sic.com.tw/ (accessed on November 2022).

[11] Intel Corporation. “Nios® II Software Developer’s Handbook”. [Online]
https://www.intel.com/content/www/us/en/docs/programmable/6835
25/21-3/software-developer-s-handbook-revision.html (accessed on
November 2022).

[12] Intel Corporation. “Altera IP Core user guide”. [Online] https://www.in
tel.com/content/www/us/en/docs/programmable/683359/17-0/altera-pha
se-locked-loop-ip-core-user-guide.html (accessed on November 2022)

[13] Intel Corporation. “Implementing Fractional PLL Reconfiguration with
Altera PLL and Altera PLL Reconfig IP Cores”. [Online] https://ww
w.intel.com/content/www/us/en/docs/programmable/683640/current/i
mplementing-fractional-pll-reconfiguration-33682.html (accessed on
November 2022).

[14] Intel Corporation. “Intel FPGA Avalon FIFO Memory Core”. [Online]
https://www.intel.com/content/www/us/en/docs/programmable/683130

/21-4/intel-fpga-avalon-fifo-memory-core.html (accessed on November
2022).

[15] Intel Corporation. “Avalon® Interface Specifications”. [Online] https:
//www.intel.com/content/www/us/en/docs/programmable/683091/20-1/i
ntroduction-to-the-interface-specifications.html (accessed on November
2022).

[16] Hathwalia, Shruti, and Meenakshi Yadav. “Design and analysis of a 32
bit linear feedback shift register using VHDL”. Indian Journal of Pure
and Applied Physics (IJPAP), 2015, vol. 52, no 3, p. 203-209.

[17] “GNU Scientific Library: Other random number generators”. [Online]
https://www.gnu.org/software/gsl/doc/html/rng.html#other-random-num
ber-generators (accessed on November 2022).

[18] Linear Technology. “LTC2308 - Low Noise, 500ksps, 8-Channel, 12-Bit
ADC”. [Online] https://www.analog.com/media/en/technical-documen
tation/data-sheets/2308fc.pdf (accessed on November 2022).

[19] Analog Devices. “AD9248 (Rev. B)”. [Online] https://www.analog.com
/media/en/technical-documentation/data-sheets/AD9248.pdf (accessed
on November 2022).

[20] Terasic Technologies Inc. “THDB-ADA High-Speed A/D and D/A
Development Kit User Manual”. [Online] https://www.terasic.com.tw/
(accessed November 2022).

[21] Analog Devices. “AD9763/AD9765/AD9767 (Rev. G)”. [Online] https:
//www.analog.com/media/en/technical-documentation/data-sheets/AD
9763 9765 9767.pdf (accessed on November 2022).

[22] Mono Project. [Online] https://www.mono-project.com/ (accessed on
November 2022).

julio
XI Southern Conference on Programmable Logic SPL2023 24

Turbo-Código seguro mediante Interleaver aleatorio
variable en el tiempo

Raúl Eduardo Lopresti, Maximiliano Antonelli, Jorge Castiñeira Moreira y Luciana De Micco
Instituto de Investigaciones Cientı́ficas y Tecnológicas en Electrónica (ICYTE)
Facultad de Ingenierı́a, Universidad Nacional de Mar del Plata (FI-UNMdP)

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)

Abstract—Los nuevos estándares de comunicaciones ponen
el foco tanto en una baja probabilidad de error como en la
seguridad de la transmisión. Estas propiedades son clásicamente
excluyentes y requieren de varias etapas de procesado de la
información a transmitir. En el caso de los códigos Turbo
es posible aumentar la seguridad de la transmisión mediante
la variación temporal del bloque Interleaver, manteniendo la
probabilidad de error. En este trabajo, se propone un sistema de
cripto-codificación y se lo estudia en cuanto a probabilidad de
error, encriptamiento y complejidad del sistema final. Se presenta
también un diseño preliminar del sistema en un dispositivo
digital, para verificar su factibilidad.

Index Terms—Códigos Turbo, Interleaver, Encriptamiento,
Seguridad.

I. INTRODUCCIÓN

Garantizar la confiabilidad e integridad de los datos trans-
mitidos en un canal ruidoso es un tema de mucho interés en
las comunicaciones digitales. Por otra parte, la seguridad de
la transmisión también es un factor clave. Tradicionalmente
los procesos de codificación y encriptamiento se realizan en
operaciones separadas y en general el proceso de encrip-
tamiento degrada la confiabilidad de los datos incrementando
la probabilidad de error del sistema [1].

En el caso de la codificación para el control de error los
Códigos Turbo (CT) son ampliamente utilizados debido a
su simplicidad y eficiencia. Además, presentan la ventaja de
ser flexibles en cuanto a su arquitectura, permitiendo incluir
alternativas que agreguen un nivel de seguridad.

Recientemente han surgido trabajos que proponen la incor-
poración de seguridad en la codificación, ya que los nuevos
estándares de comunicación tienden a priorizar estas carac-
terı́sticas. En [2] se propone un esquema de cifrado simétrico
para mejorar la seguridad de la transmisión. Los autores
plantean un sistema que realiza en el codificador un mez-
clado (interleaving) de los bits de información e intercalado
(puncturing) de los bits de paridad. La forma de realizar los
procesos de interleaving y puncturing está controlada por una
clave privada de encriptación simétrica.

En [3] los autores proponen un método de cifrado y
codificación conjunto llamado CFB-AES-TURBO, el cual
combina el cifrado AES (Advanced Encryption Standard) y
la codificación Turbo. En [4] se propone un codificador Turbo

Este trabajo fue parcialmente financiado por el CONICET (Consejo Na-
cional de Ciencia y Tecnologı́a), la Agencia Nacional de Promoción Cientı́fica
y Tecnológica (ANPCyT, PICT2019-03024).

modificado en el que los bloques constitutivos del codificador
son máquinas secuenciales de estado finito (FSSM, Finite State
Sequential Machine) en las que se inserta una función no
lineal la cual varı́a sus coeficientes en el tiempo. Mediante esta
configuración, los autores consiguen incrementar la seguridad
del sistema Turbo manteniendo su rendimiento (performance).

En este trabajo presentamos un codificador Turbo que
mejora su seguridad mediante la variación en el tiempo de
su Interleaver, éste es generado en forma aleatoria mediante
una regla. La elección de la regla a utilizar se realiza te-
niendo en cuenta que debe generar secuencias con buenas
propiedades estadı́sticas y a la vez ser simple, para facilitar
su implementación. Se estudia la utilización de diferentes
generadores de números aleatorios (PRNG, Pseudo Random
Number Generator) con perı́odos de diferentes longitudes.
Se busca que la Probabilidad binaria de error (Pbe) no se
degrade, que la aleatoriedad de la salida aumente y que la
complejidad del sistema a implementar no se incremente en
forma significativa.

II. INTERLEAVER VARIABLE EN EL TIEMPO

En la Fig. 1 se muestra la estructura de un codificador
Turbo, el mismo cuenta con dos FSSM, donde una recibe los
datos en forma directa y la otra a través de un Interleaver.
Luego, un bloque se encarga de elegir entre la salida de
cada una de estas máquinas (puncturing). Además, como se
trata de una codificación sistemática, el dato de información
se transmite también en forma directa. Finalmente, los datos
generados son formateados a un esquema binario polar. En este
trabajo se propone utilizar un bloque Interleaver que varı́e en
el tiempo. Éste se compone de un PRNG el cual entregará N
números en cada transmisión a partir de una semilla inicial,
siendo N el tamaño del Interleaver. Se sugiere implementar
el PRNG con un generador simple como un LFSR (Linear
Feedback Shift Register) o un mapa caótico, con el objetivo
de que su implementación en hardware requiera una mı́nima
cantidad de recursos adicionales. El receptor debe tener la
información de la semilla empleada para generar el primer
Interleaver, ésta y el conocimiento del mapa o PRNG utilizado
son la llave del sistema.

Existen diferentes formas de realizar la intercalación de
los datos [5], [6]. Una de las más sencillas es usando una
matriz bidimensional con R filas y C columnas tales que
RC ≥ N , R ≥ 2 y C ≥ 2, en la que se escriben los

julio
XI Southern Conference on Programmable Logic SPL2023 25

Fig. 1. Esquema simplificado de un codificador Turbo, el bloque de Interleaver
se genera a partir de un PRNG y varı́a en cada transmisión.

datos fila por fila y luego se leen columna a columna. Una
variación de este método consiste en realizar intercambios
entre filas y entre columnas antes de leer los datos para obtener
una secuencia más mezclada. En este trabajo, los datos se
escriben secuencialmente en la posiciones que resultarı́an de
realizar dichas permutaciones c, reduciendo ası́ la latencia
en el proceso de codificación. Además, para aumentar la
seguridad de la transmisión se realizan intercambios diferentes
y aleatorios en cada bloque de N datos. Estos métodos se
ejemplifican en la Fig. 2.

Fig. 2. Esquemas de algunos métodos de un intercalador. En la parte superior
se ejemplifica una matriz clásica; en el medio, una matriz con intercambios
de filas y columnas; y en la parte inferior, una variante de la anterior en
la que los datos se escriben directamente en las posiciones que resultan del
mezclado.

III. SIMULACIONES

Para obtener resultados preliminares se realizó un programa
en Matlab que simula la transmisión, el canal y el receptor.
En el esquema propuesto, se genera un Interleaver aleatorio
para cada transmisión. La llave para la codificación y la
decodificación se comparte en el principio de la transmisión y
luego se va generando un nuevo Interleaver para cada paquete
transmitido. Por ejemplo, en nuestro caso, se generaron pa-
quetes con datos aleatorios de tamaño N = 400. Estos datos

ingresan a las FSSM las cuales operan en un campo de Galois
GF(4). Una de las FSSM recibe los datos en forma directa y la
otra máquina, a través de un Interleaver generado localmente.
Luego, se simula un canal AWGN (Additive White Gaussian
Noise) y se decodifican los datos con un Interleaver y de-
Interleaver generado localmente en el receptor mediante el
PRNG a partir de la misma semilla. Se repite este proceso
para una cantidad de g = 1000 transmisiones y se promedian
los resultados. Finalmente, se compara la probabilidad binaria
de error Pbe con la obtenida para el mismo esquema pero
con la solución clásica del Interleaver en bloque, en donde los
datos se almacenan por filas en una matriz de M×M (20×20
en nuestro caso) y se leen por columnas [7].

En la Fig. 3 mostramos estos resultados, en este caso el
codificador se implementó en GF(2) para mayor simplicidad y
velocidad en las simulaciones. Estos resultados son fácilmente
extrapolables a otros GF(n). Se simularon tres tipos distintos
de Interleavers:

• Aleatorio. El Interleaver es generado en cada transmisión
con un generador aleatorio. Este vector se ordena de
menor a mayor y se registran los intercambios en los
ı́ndices entre el vector sin ordenar y el vector ordenado.
Este vector de ı́ndices es el Interleaver.

• Logı́stico. El Interleaver es generado en cada transmisión
con un mapa caótico logı́stico.

x(j + 1) = 4x(j)(x(j)− 1) (1)

con condición inicial x(0) = 0, 1. Luego se repite el
procedimiento de ordenar y registrar los ı́ndices como en
el caso del aleatorio.

• LFSR. Se genera un vector binario aleatorio de longitud
L = 16N bits con el polinomio generador x16 + x15 +
x13+x4+1. En el vector resultante se agrupan palabras
de 16 bits y se convierten a decimales. Luego se repite
el procedimiento de ordenar y registrar los ı́ndices como
en el caso del aleatorio.

• Bloques. Se muestran también los resultados del esquema
clásico de Interleaver en bloques como referencia.

Podemos ver que el esquema de codificación con Interleaver
aleatorio resulta en menos errores de transmisión, por lo que
se mejora la Pbe. El caso que más se acerca al esquema clásico
es el mapa logı́stico, esto se debe a que este mapa presenta
patrones que resultan en un Interleaver mal mezclado.

IV. IMPLEMENTACIÓN EN HARDWARE

En la Fig. 4 se presenta un diagrama del circuito diseñado
e implementado en FPGA para estudiar las factibilidades y
caracterı́sticas del esquema propuesto. Consta de los siguientes
tipos de bloques:

• PRNG → Provee un número de manera pseudoaleatoria
en cada ciclo de reloj.

• SIPO (Serial-Input Parallel-Output) → Registro de des-
plazamiento con entrada serie y salida paralela. Sirve de
interfaz en las etapas de pipeline.

• EIPO → Es un SIPO en el que las escrituras se producen
en posiciones arbitrarias en lugar de incrementales.

julio
XI Southern Conference on Programmable Logic SPL2023 26

• PISO (Parallel-Input Serial-Output) → Registro de des-
plazamiento con entrada paralela y salida serie. Sirve de
interfaz en las etapas de pipeline.

• PIRO. Es un PISO en el que los datos rotan en el registro
en lugar de ser descartados.

• Sorting → Ordena los números y provee ı́ndices de las
nuevas posiciones.

• FSSM → Realiza la codificación. En particular, el bloque
e0 FSSM proporciona además su estado de trellis por
medio de la señal s.

• Ending → Realiza la terminación del trellis pertinente a
los TCs.

• Indexing → provee el ı́ndice para el bloque EIPO.
• Selector → Realiza el puncturing del CT. En cada ciclo

de reloj escribe alternativamente a su salida una de sus
entradas.

• Control (no se presenta en el diagrama por legibilidad
del mismo) → Sincroniza el sistema mediantes señales
de habilitación y control.

El diseño cuenta con 4 etapas pipeline identificadas en la
diagrama con S0, S1, S2 y S3. En las que se realizan las tareas
que se describen a continuación:

1) S0 → Se generan y registran C y R números aleatorios
de forma concurrente. La cantidad de ciclos requeridos
es igual T0 = max(C,R).

2) S1 → Se reordenan estos dos grupos de números de
manera ascendente y se registran sus respectivas posi-
ciones, las que serán los nuevos ı́ndices de filas iR
y columnas iC para la intercalación de los datos. La
cantidad de ciclos requeridos T1 depende del algoritmo
de ordenamiento que se utilice.

3) S2 → Se realizan tres tareas en simultáneo durante
T2 = N ciclos de reloj:

• Se registra u, serie de entrada r más datos de
terminación de trellis.

• Se produce y almacena la secuencia código e0 a
partir de u.

Fig. 3. Resultados de simulaciones. Puede verse que el Interleaver imple-
mentado con un LFSR es el de mejor performance para canal Gaussiano.

• Se crea ui, la versión intercalada de u, guardando
los datos en las posiciones dictadas por el ı́ndice iu
en base a los ı́ndices iR e iC .

4) S3 → Se hacen dos tareas en paralelo durante T3 = N
ciclos de reloj:

• Se produce la secuencia código e1 con ui y la serie e
que resulta de alternar entre e0 y e1 en cada ciclo de
reloj. Es decir e = (e0(0), e1(1), e0(2), e1(3), ...).

• Se propaga u.
Particularmente, en este trabajo se experimentó con la

siguiente configuración:
• N = 400, por tanto, T2 = T3 = N
• R = C =

√
N = 20, por ende, T0 = 20

• se usaron LFSR de 32 bits para ambos PRNG.
• para el ordenamiento se empleó el algoritmo de or-

denamiento paralelo bitonic modificado [8] para iterar
sobre un solo nivel reduciendo la cantidad de hardware
necesaria para su implementación sin aumentar la canti-
dad de ciclos requeridos de procesamiento. En este caso
T1 = 15.

V. CONCLUSIONES Y TRABAJO FUTURO

Los resultados preliminares mostraron que es posible re-
alizar una cripto-codificación mediante un Interleaver aleatorio
variante en el tiempo. Las simulaciones realizadas hasta el
momento han presentado buenos resultados en cuanto a la
probabilidad binaria de error obtenida. La implementación
en hardware propuesta no requiere de una gran cantidad de
recursos extra, lo que indica que es factible su implementación.
Se prevé verificar el funcionamiento del sistema propuesto
empleado distintos mapas caóticos, y LFSR de diferente
perı́odo. Se testearán las salidas del codificador Turbo a
entrada nula mediante los test de aleatoriedad NIST [9] y
distintos cuantificadores de aleatoriedad. Se implementará en
hardware tanto el codificador como el decodificador para
evaluar la factibilidad del sistema y la performance presentada.

REFERENCES

[1] R. E. Lopresti and J. C. Moreira, “Hardware-level secure coding,” IEEE
Embedded Systems Letters, 2023.

[2] G. Zhu, D. Chen, C. Zhang, and Y. Qi, “Secure turbo-polar codes informa-
tion transmission on wireless channel,” in 2021 IEEE 15th International
Conference on Anti-counterfeiting, Security, and Identification (ASID).
IEEE, 2021, pp. 116–121.

[3] S. Jeon and J. P. Choi, “Cfb-aes-turbo: joint encryption and channel
coding for secure satellite data transmission,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[4] L. De Micco, D. Petruzzi, H. A. Larrondo, and J. Castiñeira Moreira,
“Randomness of finite-state sequence machine over gf (4) and quality of
hopping turbo codes,” IET Communications, vol. 7, no. 9, pp. 783–790,
2013.

[5] A. A. Jassim and W. A. Hadi, “Performance comparison of proposed
interleaver with different types for parallel turbo code,” Journal of
Engineering and Sustainable Development, vol. 2018, pp. 143–156, 7
2018.

[6] D. Prabhavati and K. Shantanu, “Ber analysis of turbo
code interleaver,” International Journal of Computer
Applications, vol. 126, pp. 1–4, 9 2015. [Online]. Available:
https://www.ijcaonline.org/research/volume126/number14/bahirgonde-
2015-ijca-906278.pdf

julio
XI Southern Conference on Programmable Logic SPL2023 27

Fig. 4. Diagrama del diseño implementado en una FPGA para evaluar el esquema propuesto.

[7] R. E. Lopresti, M. Antonelli, J. Castiñeira Moreira, and L. De Micco,
“Codificación segura a nivel de hardware,” in 2022 Congreso Argentino
de Sistemas Embebidos CASE. ACSE - Asociación Civil para la
investigación, Promoción y Desarrollo de Sistemas Eléctricos Embebidos,
2022, p. 27.

[8] K. J. Liszka and K. E. Batcher, “A generalized bitonic sorting network,”

in 1993 International Conference on Parallel Processing-ICPP’93, vol. 1.
IEEE, 1993, pp. 105–108.

[9] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications,” Booz-allen and hamilton inc mclean va, Tech. Rep.,
2001.

julio
XI Southern Conference on Programmable Logic SPL2023 28

Evaluation of dense and sparse linear algebra
kernels in FPGAs

Federico Favaro∗, Ernesto Dufrechou†, Juan P Oliver∗ and Pablo Ezzatti†
∗Instituto de Ingenierı́a Eléctrica (IIE)

Universidad de la República (UDELAR), Montevideo, Uruguay
Email: {ffavaro, jpo}@fing.edu.uy
†Instituto de Computación (INCO)

Universidad de la República (UDELAR), Montevideo, Uruguay
Email: {edufrechou, pezzatti}@fing.edu.uy

Abstract—Numerical Linear Algebra (NLA) is a research field
that has been characterized by the use of kernel libraries that
are de facto standards. One of the most notable examples,
particularly in the HPC field, is the Basic Linear Algebra
Subroutines (BLAS). Most BLAS operations are fundamental to
many scientific algorithms because they typically constitute the
most computationally expensive stage. For this reason, numerous
efforts have been made to optimize these operations on various
hardware platforms. There is growing concern in the HPC world
about power consumption, making energy efficiency an increas-
ingly important quality when evaluating hardware platforms.
Due to their greater energy efficiency, Field-Programmable Gate
Arrays (FPGAs) are now emerging as an interesting alternative to
other hardware platforms for accelerating this type of operations.
Our study focuses on the evaluation of FPGAs for dense and
sparse NLA operations. Specifically, we explore and evaluate
the available options for two of the most representative BLAS
kernels, i.e. gemv and gemm and one of the most important sparse
linear algebra kernel, ie. SpMV. The experimental evaluation is
conducted on the Alveo U50 and U280 accelerator cards from
Xilinx and an Intel Xeon Silver multicore CPU. Our findings show
that even in kernels where the CPU performs better in terms of
runtime, the FPGA counterpart is more energy efficient.

Index Terms—dense and sparse numerical linear algebra,
energy-efficiency, FPGA

I. INTRODUCTION

Numerical Linear Algebra (NLA) traverses several disci-
plines of science and engineering, such as artificial intelli-
gence, optimization, computer graphics and control, and is a
field of great importance in scientific computing. Solving prob-
lems in these areas often includes, as the most computationally
expensive step, basic NLA operations such as the general
matrix-matrix multiplication (GEMM), general matrix-vector
multiplication (GEMV) or the operation of multiplying a
sparse matrix by a vector (SPMV) [1], [2].

For the SPMV, perhaps the best known context is the
resolution of linear systems of equations by iterative methods.
In these cases, the method involves the repeated use of the
SPMV operation, maintaining the same (sparse) matrix but
varying the vector to be multiplied. The importance of this
sparse NLA kernel in the community has motivated a large
amount of work focused on its optimization and performance
improvement.

The importance of NLA is also supported by the strong
presence of basic algebra operations in the most widespread
benchmarks. One of the most notorious is the Linpack bench-
mark [3] that is employed to define the Top500 list [4]. This
benchmark is based on the LU-factorization to compute the
peak performance reached by a specific combination of a
hardware platform and software implementations. The LU-
factorization is part of the LAPACK specification [5] and
typically these kinds of methods are built over BLAS ker-
nels. This philosophy of developing several layers of kernels
specifications has guided the dense NLA landscape since the
70s. Firstly, with the BLAS-1 specification [6], later with
BLAS-2 [7] and BLAS-3 [8], and subsequently LAPACK
and ScaLAPACK [9].

Nowadays, energy consumption and power dissipation have
become two of the main limitations in hardware design. This
has been causing a growing concern in the HPC community
[1], due to the difficulty of developing new hardware to sustain
the increasing demand for computing, the economic cost of
electricity, and the environmental impact. In particular, in NLA
the focus is in the energy consumption required to compute
the different kernels [10]–[12].

The concern about energy has prompted, in the last
decade, a search to develop new specialized hardware
architectures.Field-Programmable Gate Arrays (FPGA) have
had a great evolution in recent years, positioning themselves in
the ecosystem of reconfigurable heterogeneous devices as one
of the most energy efficient alternatives to solve certain types
of parallel algorithms. In general, FPGA based accelerators
offer less raw computing power and memory bandwidth than
other heterogeneous platforms like GPUs. But the gap is nar-
rowing as manufacturers are making big efforts improve FPGA
capabilities. Moreover, given their lower power consumption,
there is an active topic of research for energy efficiency on
these platforms.

The classic FPGA design strategy involves the use of low-
level hardware description languages (HDL) such as VHDL
or Verilog. These impose different programming models than
standard software languages, with longer development times
and complex debugging. To overcome this disadvantage, man-
ufacturers are pushing to adopt High-Level Synthesis (HLS)

julio
XI Southern Conference on Programmable Logic SPL2023 29

languages like C/C++ and OpenCL. This allows for a more
significant adoption of FPGAs as hardware accelerators by the
software community.

In a previous work [13] we studied the potential of modern
datacenter oriented FPGAS to address NLA operations. In
particular, we evaluated available open-source implementa-
tions for two of the most representative kernels of BLAS,
i.e. GEMM and GEMV. The experimental evaluation was
carried out in an Alveo U50 accelerator card from Xilinx and,
for comparison purposes, on a Intel Xeon Silver multicore
CPU. This work extends our previous efforts by adding a
new platform, the Alveo U280 accelerator card, and also
by including a fundamental kernel of sparse linear algebra,
SPMV. All the evaluated kernels were developed in HLS C++
specifically for Xilinx devices.

The rest of the paper is structured as follows. In Section II
we summarize the NLA operations involved in this study.
Later, in Section III, we describe the studied kernels imple-
mentations. This is followed by the experimental evaluation in
Section IV. Finally, in Section V we present the conclusions
and lines of future work.

II. NUMERICAL LINEAR ALGEBRA

In this section we briefly introduce the BLAS specifications
with two of the most representative operations, GEMM and
GEMV. From the sparse linear algebra perspective, we present
the SPMV operation.

A. BLAS

Numerical Linear Algebra (NLA) is characterized by the
use of standardized kernel-libraries. A remarkable example
is the Basic Linear Algebra Subroutines (BLAS) [14], a
library that has become essential for HPC because of its
portability, efficiency, and availability. BLAS is organized into
three levels. Level 1 involves scalar, vector and vector-vector
operations, level 2 includes matrix-vector operations, and level
3 performs matrix-matrix operations. BLAS has become one of
the main libraries in linear algebra operations, such as solving
linear least square problems, linear system of equations, or
eigenvalue problems.

1) GEMM: General Matrix-Matrix Multiplication is part
of the Level 3 of the BLAS specification [15] and is considered
the main building block in dense linear algebra because many
other operations can be expressed in terms of several GEMM
invocations [16]. It is defined as follows:

C = αA ∗B + βC (1)

where A, B and C are matrices and α and β are scalars.
2) GEMV: General Matrix-Vector Multiplication belongs

to Level 2 of the BLAS specification and is defined as follows:

y = αA ∗ x+ βy (2)

where A is a matrix, x and y are vectors and α and β are
scalars.

B. Sparse

The Sparse Matrix-Vector multiplication (SPMV) is essen-
tial in NLA as it is one of the most time-consuming stages
in many applications. An example is the solution of linear
systems of equations using Krylov subspace methods. These
methods require the repeated use of the SPMVkernel, keeping
the same matrix and changing the dense vector.

The importance of this kernel has motivated numerous ef-
forts targetting its optimization and performance improvement.
Accompanying this effort is the historical evolution of HPC
platforms, which is why there are efficient implementations of
SPMV for the most widespread hardware platforms.

The serial version of the SPMV is shown in Algorithm 1,
where the sparse matrix A is stored in Compressed Sparse Row
(CSR) format. The nonzero elements are stored in vector val,
the column index of each element in the matrix A is stored
in a vector col idx, and row ptr stores the index of the first
element for each row in vector val. The nonzero elements
within each row are arranged by column index.

Algorithm 1 Serially computed sparse matrix-vector multi-
plication (SPMV) with the sparse matrix A stored in CSR
format.
Input: row ptr, col idx, val, x
Output: y

1: y = 0
2: for i = 0 to n− 1 do
3: for j = row ptr[i] to row ptr[i+ 1]− 1 do
4: y[i] = y[i] + val[j] · x[col idx[j]]
5: end for
6: end for

The main approach to parallelize this operation using the
CSR format is to exploit the absence of data dependencies
between the computations associated with each row. However,
this approach presents severe load imbalances –depending on
the sparsity pattern– and suffers from indirect data access to
the dense vector x.

III. EVALUATED KERNELS

In this section we introduce the Vitis Libraries and give
an overview of the kernels chosen for our experiments. A
review of the state-of-the-art in the use of FPGAs to compute
dense and sparse NLA operations can be found in F. Favaro
et al. [17], [18].

A. Vitis libraries

Xilinx’s Vitis software includes a range of performance-
optimized open source libraries for various purposes, including
math, linear algebra, and computer vision. The Vitis BLAS
Library, specifically, is an FPGA implementation of BLAS,
which can provide significant performance benefits for appli-
cations that require intensive linear algebra operations.

The library offers three levels of implementation: primitives
(L1), kernels (L2), and software APIs (L3). L1 includes
parametrized C++ implementations of the basic operations

julio
XI Southern Conference on Programmable Logic SPL2023 30

found in BLAS, which can be compiled with HLS. These
primitives consist of modules for computation and data move-
ment, allowing the programmer to build high-performance
logic by connecting computation and data mover modules. L2
provides kernel implementation examples for host code devel-
opers, and L3 offers C/C++ and Python APIs to accelerate
BLAS operations using pre-built FPGA images.

The Vitis SPARSE library is a fast and efficient HLS
implementation of the basic linear algebra subroutines for
handling sparse matrices on FPGAs. The library includes two
types of implementations: primitives (L1) and kernels (L2).
The L1 primitives can be used by FPGA hardware developers
to develop their own hardware designs, while the L2 kernels
implementation provides usage examples for system and host
code developers.

In this work, we evaluated the BLAS kernels from L2,
which are divided in two groups. The kernels of the first
one have the same top function, which has only two ports
for communication with external memory (DRAM or HBM),
and consist of an instruction processing block, a computation
unit (e.g. GEMM), and a timer unit. The second group makes
efficient use of the multichannel HBM memory to improve
communication bandwidth. From sparse library we tested
SPMV streaming kernel from L2.

1) GEMM basic: The architecture of this kernel from the
first group is composed of the following blocks:

• Systolic array: Implemented using L1 primitives. Its size
depends on the datatype and the memory interface. For
single precision floating point and 512 bits interface it
corresponds to 16× 16.

• Data movers: These blocks get data from global memory
and send it to the computation blocks, and vice versa.

• Transpose modules: One of the matrices must be trans-
posed before entering the systolic array. This block also
acts as a buffer to reuse data.

2) GEMM Multiple Compute Units (MCU): This kernel
is implemented as two parallel instances (compute units) of
the previous kernel. Each compute unit has its own dedicated
HBM channel. The provided version of this kernel uses four
compute units and its intended for the Alveo U250 board. In
order to fit the design in the Alveo U50 board only 2 instances
could be used. Also the DDR memory had to be changed for
HBM.

3) GEMV basic: This kernel follows the same structure as
GEMM basic, but with a custom processing block to perform
GEMV operation.

4) GEMV streaming: This kernel is from the second
group. To maximize throughput, it instantiates N parallel
GEMV compute blocks primitives and connects each one to
an individual HBM channel via data mover modules. N can
be any number from 1 to 32, which is the maximum number
of HBM channels in both Alveo boards. We evaluated this
kernel with N = 16 for the Alveo U50 and with N = 32 for
the Alveo U280.

5) Vitis SPMV: The SPMV accelerator consists of a group
of compute units (CUs) connected via AXI STREAMs. In

this design, 16 HBM channels are used to store the non-zero
values and indices of a sparse matrix. Each HBM channel
feeds a dedicated computation path to perform the SPMV
operation for the portion of the sparse matrix data stored in
that channel. As a result, 16 SPMV operations are performed
simultaneously on different sections of the sparse matrix data.
The partitioning of the sparse matrix data is done by the host.

B. Matrix-matrix multiplication (MMM)

To provide a point of comparison for the results of Vitis
BLAS, we included in our evaluation a state-of-the-art imple-
mentation for the GEMM function developed by J. de Fine
Licht et al. [19]. The authors propose an implementation of
matrix-matrix multiplication (MMM) on an FPGA that aims to
minimize off-chip data movement and maximize performance.
They accomplish this by utilizing on-chip memory and by
carefully designing the hardware architecture to be highly
optimized for the resources available. The authors start by
developing a general model for computation, I/O, and resource
utilization in order to create a hardware architecture that is
tailored to the specific capabilities of the target device.

The proposed implementation follows a systolic array ar-
chitecture, in which Np processing elements (PEs) consume
pre-fetched elements of the matrices A and B in a stream-like
manner. Each PE holds Nc compute units (CUs), and each CU
is capable of producing one output product (a partial result
of matrix C) every clock cycle. The degree of parallelism
is determined by the number of CUs. The implementation is
written in HLS C++ and is parametrized, portable, scalable,
and open-source, which are rare characteristics for highly-
tuned FPGA implementations.

C. HiSparse SPMV

Yixiao Du et al. [20] developed HiSparse, a high-
performance kernel for HBM-equipped FPGAs. HiSparse uses
a custom format for storing sparse matrices in HBM, allowing
vectorized-streaming access to each HBM channel and concur-
rent access to multiple channels. This helps to fully utilize the
available bandwidth of HBM for loading the sparse matrix. In
addition, HiSparse features a scalable on-chip buffer design
that incorporates vector replication and banking to support a
large number of parallel processing engines (PEs). This helps
to maximize data reuse in accessing the input vector. HiSparse
is able to support arbitrarily large matrices through the use of
matrix partitioning along both rows and columns.

IV. EXPERIMENTAL EVALUATION

A. Setup

We used the following hardware for the experiments:
• An Alveo U50 FPGA accelerator card from Xilinx.

The FPGA is based on the UltraScale+ architecture and
includes 872K look-up tables, 1743K registers, 28 MB of
internal RAM, and 5952 DSP blocks. The chip also has
8 GB of HBM RAM. To compile the designs we used
Xilinx Vitis 2022.2.

julio
XI Southern Conference on Programmable Logic SPL2023 31

• An Alveo U280 FPGA accelerator card from Xilinx.
The FPGA is based on the UltraScale+ architecture and
includes 1303K look-up tables, 2607K registers, 41 MB
of internal RAM, and 9024 DSP blocks. The board
includes 8 GB of HBM and 32 GB of DDR RAM. To
compile the designs we used Xilinx Vitis 2022.2.

• A system with an Intel Xeon Silver 4208 CPU with 8-
cores running at 2.1 GHz, and 80 GB of RAM. The CPU
implementations make use of Intel MKL library, using
all 8 cores with SMT disabled and AVX2 instructions.
This device is capable of AVX512, but we experimentally
determined that using this feature in multicore execution
severely limits the operating frequency of the cores,
which degrades the performance.

We performed the characterization of performance and
energy consumption as follows:

• For the Alveo platforms, the boards include sensors for
current, voltage, and temperature measurements while
the kernel is running. The driver Xilinx Runtime (XRT)
provides these values to the host.

• For the Intel Xeon processor, we used RAPL to obtain
estimations of CPU and memory power consumption.

• All power measurements were automated using PM-
lib [21]. To obtain final results we averaged readings
collected during 2 minutes of execution, with an equal
warm-up time before measuring.

• Runtime measurements are also the average of several
kernel excecutions.

B. Experimental results and discussion

In our experimental evaluation, we use the GEMM,
GEMV, and SPMV implementations from the MKL library
on a CPU as a baseline. The results presented in this section
are the average of 10 independent runs, all using single
precision floating point arithmetic.

The resource utilization of the implemented FPGA kernels
is shown in Table I.

In the first experiment we evaluate the computational perfor-
mance and energy efficiency reached by the different versions
for the GEMV operation over square matrices of: 128, 256,
512, 1024, 2048, 4096 and 8192 columns. Specifically, Table II
presents the GFLOPs achieved by all the evaluated variants.

Based on the experimental results for the GEMV kernel, the
basic version is a non-competitive option when considering the
FPGA variants. This implementation has very low levels of
parallelism because it performs the dot product on vectors of
16 elements. Additionally, there is a carry-dependency issue in
the computation loop which causes it to operate 4 times slower
than intended. For small test cases, the MMM variant performs
better than the Streaming variants, which have poor perfor-
mance on small matrices. However, for dimensions larger than
1024, the results are reversed. In particular, the performance of
the MMM variant is stagnant for matrices with 1024 or more
columns, while the Streaming variants continue to improve
even for the largest matrices. The Streaming variants provides
16 and 32 times more parallelism than the basic version

and takes advantage of the HBM on the Alveo board. The
streaming variant for the Alveo U280 has twice as much
paralellism than the Alveo U50 version, but this is not directly
reflected in the performance for small or medium matrices.
However, when the matrix size increases (for example, for size
16384) the performance improvement is more noticeable. The
CPU version offers the best peak performance for matrices
with 1024 columns, but its performance degrades for larger
test cases. This result is reasonable considering the effects of
cache memory usage.

The energy study, similar to the performance evaluation,
shows that the fastest GEMV version is generally the most
energy-efficient option. However, in all cases, the Alveo U50
FPGA implementations require less power than the CPU coun-
terpart. Additionally, the MMM version uses less power, on
average, than the Streaming variant. Finally, it is worth noting
that the FPGA version outperforms the CPU counterpart in
terms of energy consumption for the three largest dimensions.
The Alveo U280 doubles the power consumption of the U50,
and since the performance ratio is less than 2, the latter
ends up being more energy efficient. On the other hand, the
consumption of the U280 is similar to that of the CPU.

The experimental results for the performance and energy
efficiency of the GEMM kernels are shown in Tables IV
and V. In this case, the CPU variant outperforms the FPGA
counterparts for all matrix dimensions. When focusing on
the FPGA versions, the basic variant has significantly lower
performance than the other versions. For the basic and MCU
GEMM kernels, performance peaks around dimensions 1024
and then begins to decline. The reason for this performance
loss for larger sizes is not fully determined and requires further
investigation. The MMM variant also peaks around size 1024
but maintains constant performance for larger sizes. The Alveo
U280 MCU version has similar performance than the U50
counterpart, which was expected since both have the same
number of compute units. Given that the U50 consumes less
power, it is more energy efficient.

In contrast to the performance results from the GEMV
experiment, for GEMM the U50 FPGA outperforms the CPU
in energy-efficiency for six out of seven matrix dimensions.
This highlights the energy efficiency of FPGA platforms,
particularly in this context where the CPU is faster than
other versions. None of the Vitis BLAS versions outperform
the CPU in this case (except for the smallest matrix size).
This is expected since the evaluated kernels for GEMM were
designed for larger FPGA boards and are not optimized for
the Alveo U50 platform (unlike the Streaming GEMV which
was designed for this board).

The performance results for the SPMV kernels are shown in
Table VI. For this experiment we evaluated 22 sparse matrices
from the SuiteSparse Matrix Collection with different sizes
and number of nonzero elements. In general, it can be seen
that the FPGA versions obtain better performance in most
cases (16 out of 22). Within the FPGA versions, the Vitis
version wins in all but one case. Analysing the characteristics
of the matrices, it can be observed that the CPU version obtains

julio
XI Southern Conference on Programmable Logic SPL2023 32

TABLE I
RESOURCE UTILIZATION IN PERCENTAGE OF AVAILABLE RESOURCES FOR THE IMPLEMENTED FPGA KERNELS.

Utilization (%)

Type Available GEMV GEMV GEMM GEMM MMM
basic Streaming basic MCU

LUTs 870016 14.02 22.83 37.39 61.16 42.45

Registers 1740032 8.98 17.10 28.30 47.59 32.33

Block RAM 1344 16.22 16.07 18.34 22.84 53.27

DSPs 5940 0.29 9.87 20.94 41.82 46.13

TABLE II
ACHIEVED PERFORMANCE (GFLOPS) OF THE GEMV KERNELS FOR

DIFFERENT MATRIX SIZES.

U50 U280 Xeon

Size basic Stream.
16ch MMM Stream.

32ch MKL

128 0.20 0.43 1.21 0.35 5.74
256 0.43 1.48 4.48 1.30 19.75
512 0.60 5.86 7.15 5.71 42.35

1024 0.67 16.68 8.25 15.05 71.27
2048 0.63 29.59 9.15 36.68 44.24
4096 0.41 33.91 9.44 47.23 26.48
8192 - 39.34 9.54 59.37 23.42

16384 - 41.81 - 62.73 -

TABLE III
ENERGY EFFICIENCY (GFLOPS/W) OF THE GEMV KERNELS FOR

DIFFERENT MATRIX SIZES.

U50 U280 Xeon

Size basic Stream.
16ch MMM Stream.

32ch MKL

128 0.01 0.02 0.06 0.01 0.12
256 0.03 0.08 0.21 0.03 0.40
512 0.04 0.29 0.34 0.14 0.82

1024 0.04 0.77 0.38 0.35 1.36
2048 0.04 1.20 0.43 0.75 0.70
4096 0.03 1.31 0.44 0.90 0.41
8192 - 1.43 0.48 1.10 0.37

16384 - 1.47 - 1.15 -

better performance for the sparse matrices with a lower level
of sparsity (NNZ/(N ×M)).

V. CONCLUSIONS

In this article, we extended our previous research [13] about
the use of non-traditional HPC hardware for computing NLA
kernels. We have reviewed the available kernels for computing
the GEMV, GEMM and SPMV kernels on FPGAS and
extended and tuned some variants of these kernels. The exper-
imental evaluation carried out on two different Alveo FPGA
boards shows that, in general, the CPU version outperforms
the FPGA counterparts in terms of GFLOPs for the dense
case, but the use of FPGAS offers more efficient variants in
terms of energy consumption. These results are significant.
First, because of the importance of energy consumption as a

TABLE IV
ACHIEVED PERFORMANCE (GFLOPS) OF THE GEMM KERNELS FOR

DIFFERENT MATRIX SIZES.

U50 U280 Xeon

Size basic MCU MMM MCU MKL

128 18.79 170.90 5.14 187.20 220.51
256 41.29 202.60 38.05 215.59 370.73
512 78.89 227.64 184.57 172.19 386.07

1024 120.86 234.36 239.54 182.20 396.87
2048 115.39 229.61 261.11 187.60 424.29
4096 67.22 137.44 266.92 190.15 429.64
8192 - 139.13 269.23 188.23 369.73

TABLE V
ACHIEVED ENERGY-EFFICIENCY (GFLOPS/W) OF THE GEMM KERNELS

FOR DIFFERENT MATRIX SIZES.

U50 U280 Xeon

Size basic MCU MMM MCU MKL

128 0.97 6.90 0.21 3.40 3.87
256 1.95 5.78 1.46 3.46 6.32
512 2.84 5.55 8.21 3.77 6.57

1024 3.83 5.44 10.21 3.79 6.60
2048 4.04 5.56 10.99 3.81 6.65
4096 2.85 4.39 11.21 2.30 6.46
8192 - 4.54 11.27 2.38 6.00

constraint in the HPC field, and second, because of the long
history of CPU implementations compared to the recent focus
on FPGAS for this kind of computation. For the sparse case,
most of the matrices achieve better performance in the FPGA
than the CPU. This predicts that from the point of view of
energy consumption the benefits will be even greater.

There are several directions for future work. First, it is
necessary to extend the study to include other FPGAS with
different characteristics, including other Intel FPGAS. Second,
the comparison should be expanded to include other hetero-
geneous hardware platforms, such as cutting-edge GPUs and
low-power devices like ARM processors. Finally, it would be
interesting to complement the GFLOPs and GFLOPs per watt
metrics with other perspectives, such as the learning curve for
FPGA design and the design and compilation times for FPGA
implementations.

julio
XI Southern Conference on Programmable Logic SPL2023 33

TABLE VI
ACHIEVED PERFORMANCE (GFLOPS) OF THE SPMV KERNELS FOR DIFFERENT SPARSE MATRICES.

Matrix ROWS (N) COLS (M) NNZ Vitis SpMV HiSparse CPU MKL

bcsstk15 3948 3948 117816 5.50 1.46 4.46
bcsstk24 3562 3562 159910 8.27 2.20 5.17
bcsstk28 4410 4410 219024 9.53 3.13 5.94
bcsstk36 23052 23052 1143140 16.05 9.30 13.18
bodyy4 17546 17546 121550 2.75 1.42 3.03
bodyy6 19366 19366 134208 2.78 1.62 3.21
cbuckle 13681 13681 676515 17.10 6.65 9.46
ct20stif 52329 52329 2600295 12.90 13.30 13.35
ex9 3363 3363 99471 5.37 1.41 4.78
gyro k 17361 17361 1021159 12.79 8.78 12.88
msc10848 10848 10848 1229776 14.84 10.28 11.76
msc23052 23052 23052 1142686 7.68 8.87 11.10
nasa2910 2910 2910 174296 8.54 2.57 5.34
nasasrb 54870 54870 2677324 16.76 13.11 17.74
nd3k 9000 9000 3279690 22.98 18.04 19.11
nd6k 18000 18000 6897316 21.75 23.06 17.51
olafu 16146 16146 1015156 19.92 8.63 11.61
raefsky4 19779 19779 1316789 15.04 9.88 14.86
s2rmq4m1 5489 5489 263351 11.23 3.34 6.49
s3rmt3m3 5357 5357 207123 9.52 2.78 4.79
ted B 10605 10605 144579 4.68 1.94 2.74
ted B unscaled 10605 10605 144579 4.68 1.92 3.00

ACKNOWLEDGMENT

We acknowledge ANII–MPG Indep.–Research–Group: “Ef-
ficient Hetergenous Computing” with the CSC group.

REFERENCES

[1] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for
the solution of linear systems: building blocks for iterative methods.
Siam, 1994, vol. 43.

[2] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals
of Algorithms 2). Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2006.

[3] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
Past, present, and future,” 2002.

[4] “The top500 list,” 2022, available at http://www.top500.org.
[5] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J.

Dongarra, J. D. Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen, LAPACK Users’ guide, 3rd ed. SIAM, 1999.

[6] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for Fortran usage,” vol. 5, no. 3, pp. 308–
323, September 1979.

[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An
extended set of FORTRAN basic linear algebra subprograms,” vol. 14,
no. 1, pp. 1–17, March 1988.

[8] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A set of level
3 basic linear algebra subprograms,” vol. 16, no. 1, pp. 1–17, March
1990.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide. SIAM, 1997.

[10] J. Dongarra et al, “The international ExaScale software project
roadmap,” Int. J. of High Performance Computing & Applications,
vol. 25, no. 1, pp. 3–60, 2011.

[11] P. Benner, P. Ezzatti, E. S. Quintana-Ortı́, and A. Remón, “On the
impact of optimization on the time-power-energy balance of dense
linear algebra factorizations,” in Algorithms and Architectures for
Parallel Processing - 13th International Conference, ICA3PP 2013,
Vietri sul Mare, Italy, December 18-20, 2013, Proceedings, Part II, ser.
Lecture Notes in Computer Science, R. Aversa, J. Kolodziej, J. Zhang,

F. Amato, and G. Fortino, Eds., vol. 8286. Springer, 2013, pp. 3–10.
[Online]. Available: https://doi.org/10.1007/978-3-319-03889-6 1

[12] P. Ezzatti, E. S. Quintana-Ortı́, A. Remón, and J. Saak, “Power-aware
computing,” Concurrency and Computation: Practice and Experience,
vol. 31, no. 6, p. e5034, 2019, e5034 cpe.5034.

[13] F. Favaro, E. Dufrechou, J. P. Oliver, and P. Ezzatti, “Time-power-
energy balance of blas kernels in modern fpgas,” in High Performance
Computing, P. Navaux, C. J. Barrios H., C. Osthoff, and G. Guerrero,
Eds. Cham: Springer International Publishing, 2022, pp. 78–89.

[14] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (BLAS),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[15] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of
level 3 basic linear algebra subprograms,” ACM Trans. Math. Softw.,
vol. 16, no. 1, pp. 1–17, March 1990.

[16] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ortı́,
T. Rhodes, R. A. van de Geijn, and F. G. Van Zee, “Deriving dense
linear algebra libraries,” Formal Aspects of Computing, vol. 25, no. 6,
pp. 933–945, Nov 2013.

[17] F. Favaro, J. P. Oliver, E. Dufrechou, and P. Ezzatti, “Understanding
the Performance of Elementary NLA Kernels in FPGAs,” in 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 479–482.

[18] F. Favaro, E. Dufrechou, P. Ezzatti, and J. P. Oliver, “Energy-efficient
algebra kernels in FPGA for High Performance Computing,” vol. 21,
Oct 2021.

[19] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible communica-
tion avoiding matrix multiplication on FPGA with high-level synthesis,”
In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA’20), February 23-25, 2020,
Seaside, CA, USA, December 2020.

[20] Y. Du, Y. Hu, Z. Zhou, and Z. Zhang, “High-performance sparse linear
algebra on hbm-equipped fpgas using hls: A case study on spmv,”
in Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 54–64. [Online].
Available: https://doi.org/10.1145/3490422.3502368

[21] S. Barrachina, M. Barreda, S. Catalán, M. F. Dolz, G. Fabregat, R. Mayo,
and E. Quintana-Ortı́, “An integrated framework for power-performance
analysis of parallel scientific workloads,” Energy, pp. 114–119, 2013.

julio
XI Southern Conference on Programmable Logic SPL2023 34

High-Speed Textural Image Features Extraction
using FPGA

Jeremı́as Gaia∗, Emanuel Trabes‡, Eugenio Orosco∗, Francisco Rossomando∗ and Carlos Soria∗
∗ Instituto de Automática, Facultad de Ingenierı́a, Universidad Nacional de San Juan, Argentina

‡ Departamento de Electronica, Universidad Nacional de San Luis, Argentina

Abstract—Computer vision algorithms are present in almost
all robotics applications. High-level image operations like image
classification, object tracking and pattern recognition need low-
level information about the image texture to work. However, in
order to include this compute-intensive tasks in a control loop,
they must be executed in the shortest time possible. This article
describes a high-speed embedded system to compute different
texture-related image features. The system was tested for differ-
ent image sizes in two Xilinx FPGA platforms: an Alveo U200
Data Center Accelerator Card and a Zynq UltraScale+ MPSoC
ZCU104 Evaluation Kit. Results are evaluated in comparison to
a desktop PC’s performance.

Index Terms—FPGA, Texture, Haralcik Features, Image Pro-
cessing

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) can generate
dedicated hardware with low latency and high throughput
computation; these characteristics have made such devices a
suitable choice for performing compute-intensive video and
image processing. Some of the most common operations
performed over images include color to gray conversion [1],
histogram construction [2] and image filtering [3].

Texture information is a key component for detecting ob-
jects or regions of interest in an image. For example: in
medical applications, texture information improves diagnos-
tic imaging [4], [5]. This is due to evidence demonstrating
that AI-based image classification algorithms can effectively
exploit texture for pattern recognition [6], [7].

On the other hand, real-time applications like simultaneous
localization and mapping (SLAM) [8], autonomous driving
safety [9], or human-robot interaction [10] need this extraction
process to be as fast as possible in order to perform as
expected.

Another aspect of image processing connected to texture
analysis are gradient images. By applying directional filters to
the original image, edges can be easily extracted, thus allowing
the system to detect objects or patterns [11].

On the other hand, contrast has a significant visual impact
on an image, since it highlights or hides textures. The shape of
the image histogram can be used to examine this element [12],
which makes it a useful support measure for evaluating texture.

Similar to our work, in [13] an embedded architecture for
the GLCM calculation was presented. The authors proposed a
hardware design able to construct GLCM matrices from image
patches of 128x128 pixels.

In this paper, an FPGA implementation to calculate a set
of statistical image features for texture analysis is described.
The input image is processed in order to obtain histogram and
gradient-based image features as well as the Haralick texture
features [14]. Computations are performance-optimized by
exploiting FPGAs capacity to integrate sequential and parallel
processing.

The rest of the paper is organized as follows: In Sec. II,
the expressions used to determine different statistical image
features are presented. Details about how the system is imple-
mented are shown in Sec. III. Sec. IV shows Experimentation
results. Finally, Sec. V concludes the article.

II. THEORETICAL BACKGROUND

A. Histogram-based measures

In this article, three histogram-based metrics were used:
histogram flatness measure (HFM), histogram spread (HS),
and global entropy.

1) Histogram Flatness and Histogram Spread: Introduced
by Tripathi et. al. in [12], these metrics are very useful to
assess image contrast. HFM can be expressed as the ratio
of the geometric mean of the image histogram h(x) to the
arithmetic mean of h(x) (Eq. (1)).

HFM =

{∏n
i=1 xi

} 1
n

1
n

∑n
i=1 xi

(1)

where xi is the count for the i-th histogram bin and n the
number of histogram bins.

Histogram spread is the ratio of the inter-quartile distance
to the range of the histogram. Here, the inter-quartile distance
is the difference between the 3rd and the 1st quartile of the
cumulative histogram.

HS =
3rdquartile− 1stquartile

max(h(x))−min(h(x))
(2)

2) Image Entropy: The global entropy of an image (Eq. (3))
measures the amount of low-level information contained in it.
The probability for a pixel taking certain value in an image
can be represented as the bin count for the given gray tone in
the image histogram.

entropy =

255∑
i=0

h(i) log2(h(i)) (3)

julio
XI Southern Conference on Programmable Logic SPL2023 35

B. Gradient-based measures

1) Gradient Magnitude: An initial approach that could be
used to measure image sharpness is to consider the mean value
of a magnitude image. Being Gx the gradient image in the
x direction and Gy the gradient image in the y direction, the
magnitude image (G) can be defined as G =

√
(Gx)2 + (Gy)2

Then, the mean value of G is

GradMagnitude =
1

rows ∗ cols

rows∑
i=1

cols∑
j=1

G(i, j) (4)

Greater values of the gradient magnitude measure indicate
the presence of greater textural information in the image.

2) γ Sharpness: Shin et.al. [15] proposed to apply the
mapping function in Eq. (5) to the magnitude image G.

ĝi =

1

Ng
log(λ(gi − γ) + 1), for gi ≥ γ,

0, for gi < γ,
(5)

where Ng = log(λ(1 − γ) + 1) is the normalization factor,
gi denotes the gradient magnitude at pixel i, γ indicates the
activation threshold value for the mapping function, λ is a
control parameter to adjust the mapping behaviour and ĝi
stands for the amount of gradient information at pixel i. Note
that gi ∈ [0, 1], assuming a pixel range of [0, 255] and a
normalization factor of 1/255. After gi is calculated the γ
sharpness measure can be estimated as γsharp =

∑
ĝi

C. Haralick Textural Features

In 1973, Robert Haralick proposed a new approach to
extract textural information from an image: the graylevel co-
ocurrence matrix (GLCM) [14]. According to this method,
the spatial relationship between the gray tones in an image I
encodes the texture information for that image.

The first step to extract this information is to create the
GLCM. After that, a set of features can be obtained from this
matrix. This work considers five textural features: contrast,
homogeneity, entropy and the information measures of corre-
lation.

In order to further understand the following equations,
notation is provided.

• P refers to the graylevel co-ocurrence matrix.
• p(i, j) is the (i, j)th entry in the normalized graylevel

co-ocurrence matrix.

p(i, j) = P (i, j)/R, (6)

being R a normalization factor.
• px(i) refers to the ith entry in the marginal-probability

matrix obtained by summing the rows of the co-ocurrence
matrix P.

1) Angular Second Moment (energy):

f1 =

Ng∑
i

Ng∑
j

{p(i, j)}2 (7)

f 9 f 12f 1 f 3 f 5
HFM HS Entropy Gamma Sharp Grad Mag

Get Histogram Get Magnitude Image

RGB to Gray

Get GLCM

Input Image

PS

PL

Fig. 1. Overview of the proposed system based on the Zynq UltraScale+
MPSoC ZCU104 architecture.

2) Contrast:

f3 =

Ng−1∑
i

n2

{
|i−j|=n

Ng∑
i

Ng∑
j

p(i, j)

}
(8)

3) Homogeneity:

f5 =

Ng∑
i

Ng∑
j

1

1 + (i− j)2
p(i, j) (9)

4) Entropy:

f9 = −
Ng∑
i

Ng∑
j

p(i, j) log(p(i, j)) (10)

5) Information Measures of Correlation (IMC):

f12 =
HXY −HXY 1

max{HX,HY }
(11)

with HXY being the same as f9. HX and HY are entropies
of px and py respectively, calculated with expression (10).
Then

HXY 1 = −
Ng∑
i

Ng∑
j

p(i, j) log{px(i)py(j)} (12)

Correlation metrics report the presence of linear depen-
dencies in the image. In the case of the IMC measure, by
combining different correlations it provides a reference of the
amount of organized structure in the image.

III. IMPLEMENTATION DETAILS

Modern FPGAs’ can be considered a unit of two main
blocks: a Processing System (PS) block and a Programmable
Logic (PL) Block. The first normally contains an embedded
processor, while the second contains designed hardware [16].
Both blocks are carefully employed in this article, with the
PL being used for the majority of the calculations and the PS
being used for operations that cannot be parallelized.

Recently, Xilinx company has developed the xfOpenCV
library [17]. A set of performance-optimized kernels for Xilinx
FPGAs’ and SoCs, based on the OpenCV computer vision
library [18] are made available for users. It allows to translate

julio
XI Southern Conference on Programmable Logic SPL2023 36

TABLE I
COMPARISON WITH STATE-OF-THE-ART RESEARCH.

Task Article Image Size Time[ms] Platform

Sieler et.al. [13] 512x512 101.50 Virtex-XCV2000
Haralick features extraction Sieler et.al. [13] 512x512 37.00 Virtex-XC5VLX50T

Ours 640x480 2.40 ZCU104
Ours 640x480 1.09 AlveoU200

Younis et.al. [2] 640x360 1.15 Virtex XC4VSX35
Histogram Computation Ours 640x480 2.40 ZCU104

Ours 640x480 1.09 AlveoU200

Tsiktsiris et.al. [3] 640x480 98.00 Altera Cyclone IV EP4CE11
Magnitude image estimation Ours 640x480 2.40 ZCU104

Ours 640x480 1.09 AlveoU200

some of the most common computer vision operations from
sequential software processing to parallel hardware processing.

Register-transfer-level abstraction (RTL) is used in hardware
description languages to create high-level representations of a
circuit, from which lower-level representations and ultimately
actual wiring can be derived [19]. By using the xfOpenCV
kernels the programmer is relieved of the internal connections
of the system, since the library automatically generates the
RTL code.

Figure 1 shows an overview of the system. As a first step,
the processing system (running a PetaLinux [20] distribution)
reads an image stored in memory. Then, it is converted from
RGB to gray by using the traditional OpenCV computer vision
library.

The resulting grayscale image is fed into a function that
performs the GLCM computation. Given the sequential nature
of the GLCM constrction process, it is necessary for this
operation to live in the PS. The GLCM and the grayscale
image are sent to the programmable logic via write buffers.

For the design to be as fast as possible, the dataflow
paradigm was adopted. The DATAFLOW directive enables task-
level pipelining, allowing functions and loops to overlap in
their operation. This is a key factor for parallel computation,
decreasing latency and improving the throughput of the gen-
erated RTL.

Once the data is transferred to the programmable logic
portion of the FPGA, the xfOpenCV library comes into play.
The data exchange format between functions in the PL is an
adaptation of OpenCV’s cv::Mat named xf::cv::Mat.

The grayscale image is streamed both to the histogram and
magnitude image generation blocks. The former calculates the
histogram and its associated features, while the latter computes
the gradient image and its related metrics. Simultaneously, the
GLCM-dependent textural features are computed.

Once the feature extraction process is done, results are
written into a buffer to return to the PS. Since this stage of the
research is focused on the feature extraction process, results
are printed to the screen. Future work may include this features
in a control loop.

The source code files were developed in the Xilinx Vitis IDE
v2021.2 and Vitis HLS IDE v2021.2. The xfOpenCV library
V2022.1 was installed along with the OpenCV V4.4.0 library.
GCC 7, G++ 7 and CMake 3.16 were used for compilation.

TABLE II
LATENCY [MS] FOR DIFFERENT IMPLEMENTATIONS OF OUR SISTEM.

Platform Image Size

128x128 320x240 400x300 512x384 640x480 720x480

AlveoU200 0.25 0.31 0.4 0.72 1.09 1.22
ZCU104 0.74 0.85 1.14 1.66 2.40 2.76

PC 104.06 159.11 148.34 230.32 191.42 194.08

IV. RESULTS

Our design was simulated, synthesized and tested in two
separate platforms: a Zynq UltraScale+ MPSoC ZCU104
Evaluation Kit and an Alveo U200 Data Center Accelerator
Card. Also, a software version of the system was evaluated
for comparison purposes using a computer with an Intel Core
i9-10900 CPU running at 2.8 GHz with 16GB of RAM and
Ubuntu 20.04 LTS operating system.

Most state-of-the-art research focuses on accelerating only
one image operation: performing RGB to gray conversion,
histogram calculations, Haralick features extraction, etc. On
the other hand, our proposal is able to perform multiple
computations at the same time and with a single pass of the
image. Despite this difference, Table I shows a comparison
between our system and related research for different tasks.
Results shown in this table correspond to those declared by
the authors in the original publication.

Sieler et.al. [13] implemented their system for Haralick
features extraction, on two Virtex boards. For a 512x512 image
the Virtex-V board presents better results. However, for a
bigger image, our implementation outperforms [13]. For the
histogram computation task, our system is compared to [2]. In
this case, both the AlveoU200 implementation of our system
and [2] itself have similar performance. However, for the
ZCU104, the system needs two times more processing time.

The magnitude image estimation portion of Table I presents
a clear advantage for our proposed system. Both implementa-
tions outperform the work by Tsiktsiris et.al..

The highly parallel nature of the PL part of our system
allows to perform multiple tasks in Table I at the same time.
This explains the fact that the measured times for the different
tasks is the same.

Table II compares the performance of both implementations
of the proposed system versus a desktop PC. Latency times
were measured feeding the system with different versions of
an input image. The performance metric is the time difference
between the start of the grayscale image and GLCM stream
to the PL and the end of the last metric computation. The
aforementioned time measurements were obtained through a
combination of C-coded internal calculations on the deployed
system and visual inspection of the ”live waveform viewer
tool” of the Vivado Behavioral Simulation.

The reader may note that the calculation times between
the two platforms tend to diverge as the image size grows.
However, for the largest image size, latency time for the
ZCU104 board is under 3 ms.

julio
XI Southern Conference on Programmable Logic SPL2023 37

V. CONCLUSIONS

Low-latency algorithms for compute-intensive image pro-
cessing were successfully implemented, providing the user
with a set of common statistical image features that can be
leveraged for different applications.

The system was tested for a set of input images in two
Xilinx platforms with different hardware resources. A slight
difference in favor of the one of more capabilities was de-
tected.

The performance difference confirms that the design is not
platform-independent in terms of calculation times. However,
it is suitable for inclusion in a control loop, since they are able
to finish calculations under 3 ms.

ACKNOWLEDGEMENTS

J. Gaia would particularly like to thank the High Per-
formance Computing and Networking Research Group for
their cooperation and the Secretarı́a de Ciencia, Tecnologa e
Innovación (SECITI) of San Juan, Argentina, for their financial
support.

CONFLICT OF INTERESTS

Authors declare no conflict of interests.

REFERENCES

[1] Y. Zhang, X. Yang, L. Wu, and J. H. Andrian, “A case study on ap-
proximate fpga design with an open-source image processing platform,”
in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 2019.

[2] D. Younis and B. M. Younis, “Low cost histogram implementation for
image processing using fpga,” in IOP Conference Series: Materials
Science and Engineering. IOP Publishing, 2020.

[3] D. Tsiktsiris, D. Ziouzios, and M. Dasygenis, “A portable image
processing accelerator using fpga,” in 2018 7th Int. Conf. on Modern
Circuits and Systems Technologies (MOCAST). IEEE, 2018.

[4] S. Samanta, S. S. Ahmed, M. A.-M. M. Salem, S. S. Nath, N. Dey,
and S. S. Chowdhury, “Haralick features based automated glaucoma
classification using back propagation neural network,” in Proceedings of
the 3rd International Conference on Frontiers of Intelligent Computing:
Theory and Applications (FICTA) 2014: Volume 1. Springer, 2015, pp.
351–358.

[5] H. Soltanian-Zadeh, F. Rafiee-Rad et al., “Comparison of multiwavelet,
wavelet, haralick, and shape features for microcalcification classification
in mammograms,” Pattern recognition, vol. 37, no. 10, pp. 1973–1986,
2004.

[6] V. Bhateja, A. Gautam, A. Tiwari, L. N. Bao, S. C. Satapathy, N. G. Nhu,
and D.-N. Le, “Haralick features-based classification of mammograms
using svm,” in Information Systems Design and Intelligent Applications:
Proceedings of Fourth International Conference INDIA 2017. Springer,
2018, pp. 787–795.

[7] N. Zayed and H. A. Elnemr, “Statistical analysis of haralick texture
features to discriminate lung abnormalities,” Journal of Biomedical
Imaging, vol. 2015, pp. 12–12, 2015.

[8] S. Aldegheri, N. Bombieri, D. D. Bloisi, and A. Farinelli, “Data flow
orb-slam for real-time performance on embedded gpu boards,” in 2019
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE,
2019.

[9] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, 2019.

[10] J. Webber, A. Mehbodniya, R. Teng, A. Arafa, and A. Alwakeel,
“Finger-gesture recognition for visible light communication systems
using machine learning,” Applied Sciences, 2021.

[11] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image
edge detection filter using the sobel operator,” IEEE Journal of solid-
state circuits, vol. 23, no. 2, pp. 358–367, 1988.

[12] A. K. Tripathi, S. Mukhopadhyay, and A. K. Dhara, “Performance
metrics for image contrast,” in 2011 Int. Conf. on Image Information
Processing. IEEE, 2011.

[13] L. Siéler, C. Tanougast, and A. Bouridane, “A scalable and embedded
fpga architecture for efficient computation of grey level co-occurrence
matrices and haralick textures features,” Microprocessors and Microsys-
tems, 2010.

[14] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features
for image classification,” IEEE Transactions on systems, man, and
cybernetics, 1973.

[15] U. Shin, J. Park, G. Shim, F. Rameau, and I. S. Kweon, “Camera
exposure control for robust robot vision with noise-aware image quality
assessment,” in 2019 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE, 2019.

[16] Y. Nitta, S. Tamura, H. Yugen, and H. Takase, “Zytlebot: Fpga integrated
development platform for ros based autonomous mobile robot,” in 2019
Int. Conf. on Field-Programmable Technology (ICFPT). IEEE, 2019.

[17] “Xilinx opencv library,” https://github.com/Xilinx/xfopencv, [Online;
accessed 13-February-2023].

[18] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[19] F. Vahid, Digital design with RTL design, VHDL, and Verilog. John
Wiley & Sons, 2010.

[20] “Petalinux tools,” https://www.xilinx.com/products/design-tools/
embedded-software/petalinux-sdk.html, [Online; accessed 16-February-
2023].

julio
XI Southern Conference on Programmable Logic SPL2023 38

Multi-stage multirate filterbank for FPGA resource
optimization

L. H. Arnaldi
Laboratorio Detección de Partı́culas y Radiación

Bariloche Atomic Center and Instituto Balseiro, National Commission of Atomic Energy
S. C. de Bariloche, RN, Argentina

arnaldi@cab.cnea.gov.ar

Abstract—Radio astronomy instrumentation is one of the
scientific fields driving the design of more efficient filterbank
architectures to manage the significant frequency channelisation
task required to meet its scientific goals. FPGAs are the target
devices for these tasks due to its flexibility and digital resource
availavility. In this paper the problem of optimization of multirate
filter banks is addressed. The factors that define the efficiency of
these multirate systems are investigated and the implementations
of structures in stages are analyzed. The latter, together with the
polyphase implementations of the filters, allows obtaining optimal
filterbanks in the use of resources for the FPGAs.

Index Terms—Multi-rate, multi-stage, filterbank, optimization

I. INTRODUCTION

One common task in telecommunications is to separate
communication channels coming together in a wideband sig-
nal. This task result in a considerable workload for the
electronics [1], [2]. A similar problem is found in the radio
astronomy comunity, requiring precise meassurements to meet
its scientific goals. It is required state-of-the-art sensitive
detectors, extended control of instrumental systematic effects
and accurate subtraction of foregrounds emitted by the sky.
The current challenge in radio astronomy is to manufacture
detector matrices for image studies in an extremely large
format to achieve wide fields of view in the instruments
and place image matrices in space. Associated to this is the
challenge of achieving the manufacture of electronic excitation
and readout systems capable of working together with these
large detector arrays [3], [4].

Radio astronomy instrumentation is continually seeking
greater processing bandwidths whilst maintaining output fre-
quency resolutions on the order of some kHz per readout
channel. With the recent commercial availability of multi
Giga sample per second analog to digital converters (ADC),
instantaneous processing bandwidths of the order of hundreds
of MHz to many GHz are now viable for radio astronomy
applications [5]. It is now possible to read large arrays
of superconducting micro-resonators, such as the microwave
kinetic inductance detectors (MKIDs), thanks to improvements
in the cold and warm readout techniques [6]–[8].

To reduce the readout cost per sensor and the complexity of
integration, efforts are currently focused on achieving higher
multiplexing density, while keeping the readout noise below

the intrinsic detector noise and presenting manageable thermal
loads [4], [9].

In these large superconducting array readout systems, the
bandwidth of the individual resonators is much less than
the bandwidth of the multi-tone signal transmitted through
the entire array. In this case, changing the sampling rate
(decimating or interpolating) the signal in a single stage
can result in a very expensive and computationally complex
filtering arrangement. For these cases, it may be more efficient
to implement the conversion of the sampling rate in multiple
stages [10], [11]. The gradual decrease in the sampling rate
results in a simplified design of the various filter stages and the
resulting design can still meet the general decimation and fil-
tering requirements. The savings are achieved by reducing the
number of multiplications and additions per second (MADS),
or what is the same, reducing the multiplication rate (MPS).

The theory developed in this paper applies to both interpola-
tion and decimation systems, but the focus will be on decima-
tion systems as this is the processing required in the analysis
filterbanks used as readout systems in superconducting micro-
resonator detectors. The application of these structures to a
particular hardware platform is also investigated by mean of
examples in order to test its performance in terms of number of
multiplications, additions, and resource utilization. The design
steps and some test results are shown for a Red Pitaya 125-14
board [12], targeting a SoC of the Zynq-7000 (xc7z010clg400-
1) family. We focus on the development and implementation
of efficient filterbanks to extract a set of channels that exist
in a single sampled data stream. This data stream can be, for
instance, the result of passing a multi-tone signal through a
matrix of superconducting micro-resonators.

We also consider the design of oversampled discrete Fourier
transform filterbanks using finite impulse response (FIR) filters
in their polyphase form as decimators. This implementation
is targeted to new field-programmable gate array (FPGA)
technologies using standard language libraries and shows to
be extremely efficient in the use of resources.

II. DIGITAL FILTERBANKS

Filterbanks are generally categorized as two types, analysis
and synthesis filterbanks [13]–[15]. One is basically the inverse
of the other. Fig. 1 show the structure of a K-channel analysis
and synthesis filterbank. The x(n) signal is the frequency

julio
XI Southern Conference on Programmable Logic SPL2023 39

H0(z)
yM

X0(m) X̂0(m) xM F0(z)

x(n)
H1(z)

yM
X1(m) X̂1(m) xM F1(z)

x̂(n)

HK−1(z)
yM

XK−1(m) X̂K−1(m) xM FK−1(z)

S
u
b
-b
an

d
p
ro
ce
ss
in
g

Analysis filter bank Synthesis filter bank

Fig. 1. Structure of a K-channel analysis and synthesis filterbank. The x(n) signal is the multi-tone signal containing the channels of interest. The combination
of delays, plus down-sampling by M (↓M) can be seen as a commutator delivering one input sample to each of the filters (Hk(z)) at a time and at a low
sampling rate (m). In the analysis filterbank, every output channel Xk(m) is recovered at the output of a M-point DFT block. Here, the n and m (n > m)
indexes denote a signal working at the input and output sampling rate, respectively. In the synthesis, the inverse process occurs.

division multiplexed (FDM) signal containing the channels of
interest. The combination of delays, plus down-sampling by
M (↓M) delivers one input sample to each of the Hk(z)
filters at a time and at a low sampling rate (m). Here k is
the channel number (or the sub-band number) and z is the
z-transform variable. In the analysis filterbank, every output
channel Xk(m) is recovered at the output of a M-point DFT
block. Here, the n and m (with n > m) indexes denote a signal
working at the input and output sampling rate, respectively. In
the synthesis, the inverse process occurs.

The approach in these systems is, in general, to find the
perfect reconstruction (PR) condition [15], [16], where x(n) =
x̂(n), with no more distortion other than a shift in time and
some scale of amplitude.

An analysis filterbank consisting of K filters hk(n), k =
0, 1, ...,K − 1 is called a critically sampled or uniform
filterbank if hk(n) are derived from a prototype filter h(n),
where

hk(n) = h(n)W
−(k+k0)n
K , k = 1, 2, ...,K − 1, (1)

with k0, the frequency origin (normally k0 = 0) and WK =
e−j2π/K = K

√
1, the twiddle factor. Hence, the frequency

response characteristics of the filters hk(n) are simply ob-
tained by uniformly shifting the frequency response of the
prototype filter in integer multiples of 2π/K [17]. In the
uniform filterbank, K = M or, equivalently I = K/M = 1,
where M is the downsampling ratio of the filterbank and I
is defined as the oversampling ratio. The frequency spectrum
is then partitioned in a uniform manner. The sub-band width
∆k = 2π

K = Fs

K is identical for each sub-band and the band
centers are uniformly spaced at intervals of 2π

K = Fs

K , with a
system working at a sampling rate Fs.

III. CHANGING THE SAMPLING RATE IN STAGES

The design of digital FIR filters with very narrow transition
bands, flat passband, and large attenuation band results in high-
order filters. The digital anti-aliasing and anti-image filters

used in the filterbanks, critically sampled or oversampled,
belong to this category. The focus now is on using a multi-
stage design so that the design specifications of each individual
filter can be relaxed.

A. Decimate in stages

�

Stage 1 Stage 2 Stage J

· · ·h1(k)
yM1 h2(k)

yM2 hJ(k)
yMJ

x(n) y(m)

Fs Fs/M1 Fs/(M1M2) Fs/M

Fig. 2. Multi-stage decimation process.

Fig. 2 shows the arrangement of the blocks and the rela-
tionship between the frequencies for a decimation process in
J stages. The condition for allowing multi-stage decimation is
that M , the total decimation factor, is not a prime number and
can be written as the product:

M =

J∏

i=1

Mi = M1 ×M2 × · · · ×MJ , (2)

where M1,M2, . . . ,MJ , are the decimation factors associated
with the respective stages in a J-stage decimator. This in turn
implies that the original sample rate, Fs, and the final sample
rate Fs,J will be related according to

Fs,J =
Fs

M
=

Fs∏J
i=1 Mi

, (3)

and the relationship between two successive sampling rates
can be expressed as

Fs,i =
Fs,i−1

Mi
, i = 1, 2, . . . , J. (4)

The initial and final frequencies will be Fs,0 = Fs and Fs,J =
Fs/M , respectively.

julio
XI Southern Conference on Programmable Logic SPL2023 40

f0 fp fs,i = Fs,i − fs Fs,i−1/2

H(ω)

Fig. 3. Frequency response specifications for filter i, i = 1, 2, . . . , J .

B. Filter requirements for individual stages

The multi-stage decimation process can be analyzed from
a spectral perspective. Fig. 3 and Table I present the charac-
teristics required for the i-th stage of a multi-stage decimator
filter like the one shown in Fig. 2 where Fs,i and Ni are,
respectively, the output sample rate and the length of the
filter for the i-th decimator. The maximum frequency of the
passband for the whole set is given by fp and the start
frequency of the stopband is fs. The parameter ∆fi is the
normalized transition band for the i-th stage and is given by

∆fi =
fs,i − fp
Fs,i−1

. (5)

In general, to avoid any degradation due to aliasing, the start
frequency of the last stage’s stopband must obey the sampling
theorem, i.e.

fs ≤
Fs,J

2
. (6)

The characteristics of the passband of the filter of the i-th
stage must be flat between zero frequency and fp to avoid
any distortion of the signal in that band. On the other hand,
to ensure that there are no aliasing components in the desired
signal band, the start frequency of the stopband of the i-th
stage filter must be set to the relation:

fs,i ≤ Fs,i − fs. (7)

The result in (7) implies that the starting frequency of the
stopband of the last stage is fs,J = Fs,J−fs = 2fs−fs = fs,
as required for the whole system.

At this point, the next parameters to analyze are the ripples
allowed in the pass and attenuated bands of each stage. The
requirement is that the overall passband ripple of the J-stage
composite filter be below 1 + δp. This places more stringent
restrictions on the tolerable passband ripple in the individual
cascaded stages. A simple, but not unique, way of specifying
the passband of each stage is to require that 1 + δp,i, be
specified such that δp,i = δp/J . Similarly, the stopband ripple
δs specifies the overall stopband ripple, or the stopband ripple
of the cumulative multi-stage filter. This ripple is imposed
on all cascaded stages, that is, δs,i ∼= δs. This is particularly
important since aliasing is not necessarily added consistently,
so sufficient damping is required to avoid aliasing at each
stage. However, it is up to the designer and the nature of the
design to specify this parameter.

TABLE I
REQUIREMENTS FOR INDIVIDUAL STAGE FILTERS

Parameter Value

Passband 0 ≤ f ≤ fp

Stopband (Fs,i − Fs
2M

) < f <
Fs,i−1

2
, i = 1, 2, . . . , J

Passband ripple δp/J

Stopband ripple δs

Filter length Ni ≃
D∞(δp,δs)

∆fi
− f(δp, δs)∆fi + 1

Having understood the relationship between the various
parameters relating the responses of the different stages in
a multi-stage decimator, an interesting question now arises:
what is the optimal number of decimation stages and what
is the amount by which to decimate at each stage to achieve
maximum efficiency?. The answer to these questions lies in
minimizing the computational complexity of the overall filter,
which in turn is related to the expression for the length of the
filter (N) that appears in Table I [10], [18].

The ultimate goal of a multi-stage decimator is to minimize
the total number of multiplications and additions per second
(MADS), RT . Let Ri be the number of MADS in the i-th
stage of decimation, then RT is given by

RT =

J∑

i=1

Ri. (8)

Minimizing RT minimizes the total amount of computation
required in the system. Here it should be noted that RT is
nothing more than another way of expressing the MPS for the
global system. Then, given the optimal filter length Ni,opt for
the i-th stage and assuming a direct form implementation for
FIR filters, the parameter Ri can be expressed as

Ri =
Ni,opt × Fs,i

Mi
. (9)

From (4) and (9), in [11] it was found that (8) can be written
as

RT
∼= D∞

(
δp
J
, δs

)
FsS (MADS) (10)

where

S =
2(

∆F
∏J−1

j=1 Mj

)+
J−1∑

i=1

Mi(∏i
j=1 Mj

)(
1− α

∏i
j=1 Mj

) ,

(11)
which has the final form, α = 2−∆F

2M and ∆F =
fs−fp

fs
. D∞

is a parameter that depends on δp and δs. Its development is
out of the scope of this paper, but the interested reader can be
found it on [11].

Similarly, the theory can be developed to find the total
memory cost of the system, NT , defined as

NT =

J∑

i=1

Ni, (12)

julio
XI Southern Conference on Programmable Logic SPL2023 41

where Ni is the number of coefficients of the filter of the
i-th stage. This cost function can be expressed in terms of
D∞(δp, δs) as

NT = D∞(δp, δs)GT, (13)

where G is a constant of proportionality related to the imple-
mentation of the filter coefficients and T is given by

T =
2

∆F

M
∏J−1

j=1 Mj

+

J−1∑

i=1

Mi

1− α
∏i

j=1 Mj

. (14)

In other words, the problem of minimizing RT or NT is
related to minimizing the functions S in (11) and T in (14),
respectively.

IV. OPTIMAL NUMBER OF STAGES REQUIRED

The design of multi-stage filters is a complex multidimen-
sional optimization problem, although in [19] and [20] it was
found that optimal solutions can be derived analytically by
taking the partial differential equation of the cost function,
reducing it to a one-dimensional problem without the need for
complex numerical search algorithms. However, the optimal
solutions are often groups of non-integer real numbers that
cannot be implemented in practical systems. Manual adjust-
ment of the results is needed, still requiring numerical methods
to solve the equations, and for each design, the roots of
the equation must be put back into a cost function to find
the optimal solution set. In [21] this problem is represented
in the integer domain using the grouping theory, and then
performs the integer factorization. In [22] it is shown that the
problem can be solved by an exhaustive search using genetic
algorithms. In general, approaches that produce useful integer
results have a high computational cost and do not consider
important design properties of multi-stage filters [23].

Here we develop a simplified algorithm to directly search
for optimal integer groups. Given the most useful practical
design parameters, optimal results can be approximated with
a limited number of assemblies for any design that satisfies
certain constraints, with negligible cost. This greatly simplifies
the complexity of the problem.

A. Search algorithm
The choice of the number of stages, J , and of the decimation

factors, Mi, is not a trivial problem. However, in practice the
number of stages rarely exceeds 3 or 4 [24]. Furthermore,
for a given value of M , there is a limited set of possible
integer factors. Then a possible solution to the problem of
finding optimal decimation factors is to determine all possible
factors of M , that is, all possible sets of Mi values and their
corresponding requirements for RT or NT . The most efficient
(or preferred) solution will then be chosen by inspection.

However, looking at the results of the above mentioned real-
value and integer-value optimal solution experiments, there are
two important properties of optimal solution distributions for
computational cost and storage memory cost:

1) the set of Mi is always presented in descending order for
multi-stage decimation and in ascending order for multi-stage
interpolation [11], [24].

2) ∆F is related to the width of the transition band. Varying
∆F changes the order of the filter but not the sample rate shift
factor (Mi) of each stage.

Therefore, the search for integer-valued solutions can be
informed by 1), and because of 2), the size of the problem is
considerably smaller than it appears to be.

Based on these properties, we developed an algorithm to
search for the number of optimal stages that would allow
us, given a certain design requirement, to obtain the most
appropriate implementation in terms of the use of resources
for the FPGA that would house the processing system. The
algorithm is written in Python language and allows to obtain
all the useful parameters of each stage of the studied system.

V. EVALUATION OF IMPLEMENTATIONS USING THE
SEARCH ALGORITHM

To verify the algorithm developed, different designs of the
filterbank with K = 16, critically sampled and oversampled
channels, single-stage and multi-stage, were analyzed and
implemented, before going on to analyze the characteristics
of larger designs with K ≥ 10000 channels. In each case, the
optimal implementation for multi-stage designs was sought.
The designs were tested on the Red Pitaya board.

A. Critically sampled filterbank K = M = 16 and oversam-
pled filterbank K = MI = 16

The general specifications of the filter are the following:
a decimator is designed with M = 16, which converts
the frequency Fs,0 = 125MHz to the output sample rate
of Fs,J = 7.8125MHz. The passband edge frequency is
fp = 3.125MHz and the stopband edge frequency is fs =
3.90625MHz. The maximum requested passband ripple is
specified at δp = 5.756 × 10−3 (0.1 dB), and the maximum
stopband ripple is δs = 5.041× 10−4 (66 dB).

Applying the algorithm for finding the optimal number of
stages, the decimation factor M = 16 can be expressed as a
product of two integers, that is, M = M1 ×M2 and instead
of single-stage decimation, this processing can be done in
two steps. The algorithm finds two possible combinations,
M = 4 × 4 or M = 8 × 2. After analyzing the results, it is
found that the combination M = 8×2 is the most efficient in
terms of RT . The choice of these factors yields N1 = 44 and
N2 = 61 for the first and second stages, respectively. Fig. 4(a)
shows the arrangement of the filtering and decimating blocks
for the chosen configuration. In the first stage, the input signal

�

�

y8
y2H1(z) H2(z)

125MHz 15.625MHz 7.8125MHz

y16H(z) = H1(z)H2(z
8)

x(n) y(m)

x(n) y(m)

a)

b)

125MHz 7.8125MHz

Fig. 4. Two stage decimator. a) Implementation for M = 8×2. b) One-stage
equivalent for M = 8× 2.

julio
XI Southern Conference on Programmable Logic SPL2023 42

TABLE II
DECIMATOR IMPLEMENTATIONS FOR M = 16.

J N1 N2 M1 M2 RT NT

1 463 - 16 - 3.6328125× 109 463
2 44 61 8 2 1.1640625× 109 105
2 13 124 4 4 1.3750000× 109 137

TABLE III
OVERSAMPLED DECIMATOR IMPLEMENTATIONS FOR M = 8.

J N1 N2 N3 M1 M2 M3 RT NT

1 92 - - 16 - - 1.437500× 109 92
2 32 23 - 4 2 - 1.359375× 109 55
3 12 15 24 2 2 2 1.593750× 109 51

is decimated by 8 by the filter H1(z), and in the second stage
by 2 for the filter H2(z). Fig. 4(b) presents the equivalent one-
stage arrangement of the two-stage decimator, obtained after
applying the third Noble identity [25], [26]. The function of
the H1(z) and H2(z) filters is to enforce the general design
requirements specified for the decimator. The H2(z) filter,
operating at the 15.625MHz sampling rate, is designed for the
3.125MHz passband cut-off frequency and the 11.719MHz
edge frequency. The role of H1(z) is to provide a passband in
the 0−3.125MHz range and to provide the 66 dB attenuation
in the rest of the spectrum. With this approach, the overall
filtering task is shared between two lower-order filters. The
advantages of the two-stage decimator are apparent when
comparing the filter characteristics with those required for
the one-stage decimator. Table II shows the parameters found
for the implementations of the decimator by M = 16. The
memory requirements, NT , for each implementation have also
been included.

To complete the analysis, the filterbank design oversampled
by a factor I = 2 and K = MI = 16 channels was also
analysed. Fig. 5 and Table III show the results.

�

�

y4
y2H1(z) H2(z)

125MHz 31.25MHz 15.625MHz

y8H(z) = H1(z)H2(z
4)

x(n) y(m)

x(n) y(m)

a)

b)

125MHz 15.625MHz

Fig. 5. Two-stage oversampled decimator. a) Implementation for M = 4×2.
b) One-stage equivalent for M = 4× 2.

VI. ANALYSIS FOR K ≥ 10.000 CHANNELS

The challenge is to efficiently read an array of 1000 or
more superconducting detectors on an FPGA that has limited
hardware resources. In this section we analyse the different
possible implementations to be able to read these large arrays
of detectors, starting from 512 MHz up to 2 MHz as these are

TABLE IV
AVAILABLE Mi FACTORS FOR M = 256 AND J = 1, 2, 3, 4.

J Mi factors

1 256
2 (64, 4), (128, 2), (16, 16), (32, 8)
3 (16, 8, 2), (16, 4, 4), (32, 4, 2), (8, 8, 4), (64, 2, 2)
4 (8, 4, 4, 2), (4, 4, 4, 4), (16, 4, 2, 2), (8, 8, 2, 2), (32, 2, 2, 2)

TABLE V
AVAILABLE Mi FACTORS FOR M = 128 AND J = 1, 2, 3, 4.

J Mi factors

1 128
2 (16, 8), (32, 4), (64, 2)
3 (8, 8, 2), (32, 2, 2), (16, 4, 2), (8, 4, 4)
4 (16, 2, 2, 2), (8, 4, 2, 2), (4, 4, 4, 2)

typical values in nowadays hardware. That is, designs with
decimation factors of M = 256, critically sampled and M =
128, oversampled by a factor I = 2. Table IV and Table V
show the results of the available Mi factors for the critically
sampled and oversampled cases, respectively.

To conclude the analysis of efficiency in multi-stage sys-
tems, Fig. 6 shows a comparison between the critically sam-
pled and oversampled designs that have been analyzed up
to now. It can be seen from the figure that although the
critically sampled design has a higher computational load
when implemented in a single stage, it quickly outperforms
the oversampled design when implemented in multiple stages.
However, if the design is to be implemented in a single stage,
it is better to choose oversampling. It is also true that for the
readout of micro-resonators for spectral studies, it is best to
use an oversampled system, since in this way there is no loss
of spectral zones. Taking this last into account, it can be seen
in the figure that there is an important change when going
from one stage to two stages, but then not only that there
is not much difference in computational efficiency, but also
that it decreases (or what is the same, the computational load
increases).

In terms of memory element usage, the oversampled design
is more efficient in designs up to two stages. For more stage
designs, the difference in memory resource usage between the
two implementations is negligible.

VII. CONCLUSIONS

The problem of optimizing filterbanks was addressed in
order to understand the factors that define their efficiency.
We presented the analysis of structures in stages, as possible
option for the development of the readout system.

Thanks to the algorithm developed to find the optimal
number of stages, it was possible to find the most efficient
implementation. Although the critically sampled design has a
higher computational burden when implemented in a single
stage, it quickly outperforms the oversampled design when
implemented in multiple stages.

julio
XI Southern Conference on Programmable Logic SPL2023 43

1 2 3 4
Stages

1010

2 × 109

3 × 109

4 × 109

6 × 109

R T
 (M

PS
)

Critical sampling
Oversampling

1 2 3 4
Stages

103

N
T (

#)

Critical sampling
Oversampling

Fig. 6. Comparison of resource use and computational efficiency between critically sampled and oversampled designs (I = 2). Designs with Fs,0 = 512MHz
and K = 256 are compared.

If the choice is to implement the filterbank in a single stage,
it is convenient to use the oversampled system.

In terms of memory element usage, the oversampled alter-
native is more efficient in designs with up to two stages. For
multi-stage designs, the difference between both implementa-
tions is negligible.

REFERENCES

[1] F. Harris, C. Dick, and M. Rice, “Digital receivers and transmitters
using polyphase filter banks for wireless communications,” IEEE Trans.
Microw. Theory Tech., vol. 51, no. 4, pp. 1395–1412, apr 2003.

[2] F. J. Harris, Multirate Signal Processing for Communication Systems.
Prentice Hall, may 2004, vol. 1.

[3] J. Van Rantwijk, M. Grim, D. Van Loon, S. Yates, A. Baryshev,
and J. Baselmans, “Multiplexed Readout for 1000-Pixel Arrays of
Microwave Kinetic Inductance Detectors,” IEEE Trans. Microw. Theory
Tech., vol. 64, no. 6, pp. 1876–1883, 2016.

[4] L. H. Arnaldi and H. D. Dellavale, “Oversampled filter bank channelizer
for cryogenic detectors,” Review of Scientific Instruments, vol. 92, no. 2,
p. 023304, feb 2021.

[5] J. Tuthill, G. Hampson, J. Bunton, A. Brown, S. Neuhold, T. Bateman,
L. De Souza, and J. Joseph, “Development of multi-stage filter banks
for ASKAP,” Proc. 2012 Int. Conf. Electromagn. Adv. Appl. ICEAA’12,
pp. 1067–1070, 2012.

[6] P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas,
“A broadband superconducting detector suitable for use in large arrays.”
Nature, vol. 425, no. 6960, pp. 817–21, oct 2003.

[7] B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidz-
inas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer
using microwave kinetic inductance detectors,” Appl. Phys. Lett., vol. 89,
no. 22, p. 222507, 2006.

[8] L. H. Arnaldi, “Técnicas Avanzadas de procesamiento digital con
aplicaciones en microresonadores superconductores multipı́xeles,” 2021.
[Online]. Available: https://ricabib.cab.cnea.gov.ar/985/1/Arnaldi.pdf

[9] ——, “Implementation of a Polyphase Filter Bank Channelizer on a
Zynq FPGA,” in 2020 Argentine Conf. Electron., no. 978. IEEE, feb
2020, pp. 57–62.

[10] O. Herrmann, L. R. Rabiner, and D. S. K. Chan, “Practical Design Rules
for Optimum Finite Impulse Response Low-Pass Digital Filters,” Bell
Syst. Tech. J., vol. 52, no. 6, pp. 769–799, jul 1973.

[11] R. Crochiere and L. Rabiner, “Optimum FIR digital filter implemen-
tations for decimation, interpolation, and narrow-band filtering,” IEEE
Trans. Acoust., vol. 23, no. 5, pp. 444–456, oct 1975.

[12] STEMLab RedPitaya, “RedPitaya Open Source Instrument.” [Online].
Available: http://www.redpitaya.com/

[13] M. G. Bellanger, G. Bonnerot, and M. Coudreuse, “Digital Filtering by
Polyphase Network: Application to Sample-Rate Alteration and Filter
Banks,” IEEE Trans. Acoust., vol. 24, no. 2, pp. 109–114, 1976.

[14] P. P. Vaidyanathan, “Multirate Digital Filters, Filter Banks, Polyphase
Networks, and Applications: A Tutorial,” Proc. IEEE, vol. 78, no. 1, pp.
56–93, 1990.

[15] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing.
Prentice-Hall, may 1983, vol. 1.

[16] M. Vetterli, “A Theory of Multirate Filter Banks,” IEEE Trans. Acoust.,
vol. 35, no. 3, pp. 356–372, 1987.

[17] J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Pearson,
abr 2006, vol. 1.

[18] L. Rabiner, “Approximate design relationships for low-pass FIR digital
filters,” IEEE Trans. Audio Electroacoust., vol. 21, no. 5, pp. 456–460,
oct 1973.

[19] M. Coffey, “Optimizing multistage decimation and interpolation pro-
cessing,” IEEE Signal Process. Lett., vol. 10, no. 4, pp. 107–110, apr
2003.

[20] M. W. Coffey, “Optimizing Multistage Decimation and Interpolation
Processing—Part II,” IEEE Signal Process. Lett., vol. 14, no. 1, pp.
24–26, jan 2007.

[21] Der-Feng Huang, “The direct integer factorization approach to the
Crochiere and Rabiner multistage FIR designs for multirate systems,”
in 3rd Int. Symp. Image Signal Process. Anal. 2003. ISPA 2003. Proc.,
vol. 2. IEEE, 2004, pp. 1060–1065.

[22] D.-F. Huang and S.-R. Hung, “The Optimum Design of Multistage
Multirate FIR Filter for Audio Signal Sampling Rate Conversion via
a Genetic Algorithm Approach,” in 2009 2nd Int. Congr. Image Signal
Process., vol. 2. IEEE, oct 2009, pp. 1–5.

[23] X. Zhu, Y. Wang, W. Hu, and J. D. Reiss, “Practical considerations on
optimising multistage decimation and interpolation processes,” in 2016
IEEE Int. Conf. Digit. Signal Process., vol. 0, no. 4. IEEE, oct 2016,
pp. 370–374.

[24] R. E. Crochiere and L. R. Rabiner, “Interpolation and Decimation of
Digital Signals-A turorial review,” IEEE Trans. Geosci. Remote Sens.,
vol. 69, no. 3, pp. 300–331, 1981.

[25] ——, Multirate Digital Signal Processing. Pearson, mar 1983, vol. 1.
[26] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice Hall,

oct 1993, vol. 1.

julio
XI Southern Conference on Programmable Logic SPL2023 44

Real-time noise reduction through independent
channel averaging for real-time biomedical signal

acquisition
1st Federico N. Guerrero

LEICI (UNLP-CONICET-CIC),
La Plata, Argentina.

federico.guerrero@ing.unlp.edu.ar

2nd Matı́as Oliva
LEICI (UNLP-CONICET-CIC),

La Plata, Argentina.
matias.oliva@ing.unlp.edu.ar

3rd Enrique M. Spinelli
LEICI (UNLP-CONICET-CIC)

La Plata, Argentina.
spinelli@ing.unlp.edu.ar

Abstract—In this work, a strategy to obtain a lower noise floor
from commercial multichannel Sigma-Delta analog-to-digital con-
verters (ADCs) is presented. Specifically, data from ADS131E08,
an 8-channel simultaneous sampling 24 bit converter, is captured,
processed, and transmitted in real time using a MAX 10 FPGA
included in a measurement system with medical grade isolation,
thus able to acquire biomedical signals. Noise measurements
show that the system is able to reduce the equivalent input
voltage noise of the ADC by a factor of 2.8, extending the
measurement dynamic range by 9 dB. In this way, the system
improves the otherwise minimum available noise floor with no
additional analog stages and allows using higher data rates while
maintaining signal quality. Experimental electrocardiogram and
electromyogram recordings were taken using non-invasive dry
electrodes, validating the operation of the system as a biopotential
acquisition platform. Under these experimental conditions, a
noise reduction factor of 2.1 times for the noise floor of the
measured biopotential signals was verified.

Index Terms—noise, biopotential, average, fpga, sigma-delta
converter, dynamic range

I. INTRODUCTION

Sigma-Delta (Σ∆) analog-to-digital converters (ADCs) pro-
vide a unique solution for biomedical signal acquisition since
their output data stream can achieve a very high dynamic
range (DR) and very low noise. When biomedical signals are
measured from the body, the transducing electrodes introduce
a DC offset with a Voff,max = ±300mV range. The Voff,max

value is taken from electrocardiography (ECG) standards for
a differential channel [1] and although it is pessimistic, it is
often the case that the offset is within a 10mV to 100mV
range. On the other hand, biopotential signals should be
measured with a noise floor on the order of 1 µVrms or less
[2], [3] which can be translated to a signal amplitude of
6 µVpp considering ±3σ thus taking the dynamic range to
20 log10(600mV/6 µV) = 100 dB.

If high-pass filtering is applied the dynamic range is reduced
by blocking the DC offset decreasing the necessary DR to
the approximately 70 dB needed by the signal itself. In these
cases, the usual strategy is to apply filtering in combination

This work was funded by projects CONICET PIP-0323, UNLP PID/I254
and PPID/I016, and PICT-2018/3747.

with a relatively high amplification factor to allow acquisition
with a 12 bit to 14 bit ADC. However, there are a number of
disadvantages to this methodology. The first disadvantage is
simply the necessity of an analog stage capable of providing
a relatively high gain in the order of 100-1000 times while
rejecting DC electrode offset components [4]. The second is
related to a form of interference affecting biomedical measure-
ments called artifacts which are produced when the electrodes
or the skin are mechanically perturbed (e.g. by pulling the
cables or by the displacement of the muscles themselves).
Artifacts produce wide fluctuations of the baseline signal
which can saturate filters and amplification stages, that in
turn may take a long time to return to an operational range.
Moreover, front-end solutions with additional amplification
may require further complex balancing circuits [5] compared
with unity-gain solutions [6].

Thus, high dynamic range, low noise Σ∆ converters have
been identified as advantageous for biomedical signal mea-
surements [7] and this strategy is incorporated in state-of-the-
art integrated acquisition systems [8], [9]. The semiconductor
industry has included these ADCs in commercial application-
specific standard products (ASSPs) such as the ADS129x
and ADS13x lines from Texas Instruments and AD7779 from
Analog Devices, as some examples. These ASSPs are useful in
programmable-logic-based systems as biomedical signal front-
ends [10], [11].

Sigma-Delta converters are among the highest DR ADCs
commercially available and achieve a very low referred-to-the-
input (RTI) noise voltage. The RTI noise is in fact sufficiently
low to enable biomedical signals to be acquired with no
amplification, preserving the full DR of the device. However,
augmenting the output data rate (ODR) results in a degradation
of the noise properties of these devices because of their
fundamental trade-off between resolution and bandwidth [12].
This trade-off can be seen in Table I, where values obtained
from Table 1 and Equation 1 of ADS131E08’s datasheet [13]
are displayed. The motivation of the presented work is to
further extend the capabilities of commercial Σ∆ ADC devices
making (i) previously unavailable noise-floor levels feasible
without additional analog stages and (ii) lower noise levels at

julio
XI Southern Conference on Programmable Logic SPL2023 45

TABLE I: ADS131E08 specifications parametrized by gain
and output data rate (from its datasheet [13])

Gain - ODR* 1 - 1 kHz 12 - 1 kHz 1 - 16 kHz 12 - 16 kHz

DR [dB] 117.7 108.0 102.8 94.2
ENOB † [bits] 19.6 18.0 17.07 15.65
RTI N. ‡ [µVrms] 2.13 0.54 12.33 2.75
*Output Data Rate.
† Effective number of bits.
‡ Referred-to-the-input noise voltage.

higher data rates available.

II. METHOD

A. Signal-to-noise ratio improvement through averaging

One strategy to improve the signal-to-noise ratio (SNR) of
an ADC is to use oversampling by which temporal averaging
is used to reduce noise. However, this technique implies a
reduction of the ODR. If several independent ADC channels
are available, the SNR can be improved by simultaneously
acquiring the same signal with all channels and then averaging
across all digitized samples [14], [15] as shown in Fig. 1.

Considering a signal vin(t) which is sampled obtaining

x(k) = vin(kT) + nADC(k) = s(k) + nADC(k) (1)

where nADC is the noise introduced by the analog-to-digital
conversion process and s(k) is the sampled signal of interest,
the output of the N-channel averaging stage is equal to

y(k) =
1

N

N∑
i=1

xi(k). (2)

After applying (2) to the N input signals given by (1) then

y(k) =
1

N

N∑
i=1

(si(k) + nADC,i(k))

= s(k) +
1

N

N∑
i=1

nADC,i(k) = s(k) + nT (k) (3)

The output y(k) contains the unmodified component of
the signal of interest s(k) and the averaged noise from all
channels nT (k). While for ideal ADCs quantization noise is
linked to the weight of the least significant bit (LSB), the noise
contribution of Σ∆ converters is measured by an equivalent
number of bits (ENOB) which corresponds to the root mean
square (rms) noise level and is dependent on the output data-
rate and the digital filter implementation.

Given the assumption that the noise is an independent
identically distributed (iid) random process with Gaussian
distribution, the rms value can be obtained by calculating its
standard deviation σADC , which can then be further estimated
by the standard deviation over sampled time k under the
assumption of ergodicity.

Fig. 1: Block diagram of the simultaneous sampling averaging
scheme.

The total noise component present in the output signal will
have a variance given at each instant k by

E{nT (k)
2} = σ2

T = E

(

1

N

N∑
i=1

nADC,i

)2

=
1

N2

N∑
i=1

σ2
ADC +

1

N2

N∑
i=1

N,i̸=j∑
j=1

ρi,jσiσj (4)

Where ρi,j is the correlation between the noise of pairs of
channels and E{nADC,i} has been considered 0. The best
case is given if all channels are uncorrelated and hence ρi,j =
0∀ i ̸= j therefore

σ2
T = σ2

ADC/N ∴ σT = σADC/
√
N (5)

yielding a SNR improvement equal to
√
N [14], [16]. The

worst case is given when the correlation between all noise
signals is 1 in which case σT = σADC and the SNR is exactly
the same as if no averaging had been performed.

B. System implementation

An acquisition system was built in order to capture data
from an ADS131E08 ADC and perform the average of its
channels per (2). The system was implemented as a full biopo-
tential acquisition platform including medical grade isolation
in order to perform biopotential measurements. Its main blocks
and their interconnections can be seen in Fig. 2.

The ADS131E08 has 8 independent Σ∆ ADCs, each with a
programmable gain amplifier (PGA). The 8 channels perform
simultaneous sampling of each of their differential inputs. The
output data rate is configurable from 1 kHz to 16 kHz. Higher
32 kHz and 64 kHz data rates are available but the dynamic
range is reduced to less than 16 bits, therefore they were not
used.

julio
XI Southern Conference on Programmable Logic SPL2023 46

ADS131E08

Active
electrodes

SPI

Data Ready

Power down

MAX 10 FPGA

10M50DAF484

ADUM6401

SPI to USB

transceiver

DE10 LITE
Developement

board

PC

Galvanic
Isolation

SPI

SPI

Battery pack +
voltage regulation

5 V
3.3 V

CH[1-8]p
CH[1-8]n

Fig. 2: Block diagram of the biopotential acquisition system
implementation.

The core element controlling the system is a MAX 10
10M50DAF484C7G FPGA from Intel (previously Altera) used
in a DE10 LITE development board from Terasic. The ra-
tionale for selecting an FPGA instead of a microcontroller
platform was that for the latter the volume and rate of data
can represent a demanding task. In contrast, an FPGA would
be scarcely demanded (as will be shown later in this work)
and has the potential to further develop both the technique
by including more complex processing, and the acquisition
platform by including user and data interface capabilities.

The system was configured with a set of finite state ma-
chines (FSMs) controlling a communications interface to pro-
gram ADS131 registers and receive its data output, summing
logic to perform the average, and a second communications
interface to send the data in real time to a personal computer
(PC). The ADS131 interface consists of a master serial pe-
ripheral interface (SPI) bus plus control lines required by the
converter. The interface with the PC is achieved through a
second master SPI bus sending the processed output data in a
frame for serialized transmission. The behavior and function
of the configured FSMs are shown in Fig. 3. A 50MHz clock
included in the DE10 Lite board was used as input to a phase-
locked loop (PLL) to obtain a 100MHz master clock signal.
The SPI master module was sourced from OpenCores SPI
MASTER/SLAVE project [17].

C. Experimental setup

In order to ascertain the viable noise reduction that can
be obtained with the proposed technique, all channels of the
ADS131E08 ADC were short-circuited to a voltage reference
using the internal multiplexer of the device. The resulting RTI
noise was evaluated by taking 32 000 samples at 1 kHz and
16 kHz for all available gains (1, 2, 4, 8 and 12), and at gains
1 and 12 for all available output data rates (1, 2, 4, 8 and 16

Fig. 3: Programmable-logic system configuration.

kHz). Results were compared with data extracted from Table
1 and Equation 1 of ADS131E08’s datasheet [13].

Biopotential measurements were carried out to validate
the usefulness of the acquisition system and noise-reduction
impact. A previously reported driven-right-leg (DRL) inde-
pendent electrode [18] was connected to the isolated power
provided by the board with a reference of 1.2V. Measurements
were performed by attaching two active electrodes composed
of operational amplifiers (OAs) in unity-gain buffer config-
uration to the positive and negative inputs of the ADS131
ADC respectively. Therefore, one differential channel can be
measured with the active electrodes shown in Fig. 2 and
routed to vin signal shown in more detail in Fig. 1, thereby
connecting it to the 8 inputs simultaneously. The buffers in the
active electrodes serve to mitigate electromagnetic interference
(EMI) due to capacitance couplings to the wires as is their
usual function [19] and in this case, are paramount to avoid
input impedance degradation due to the connection to multiple
input stages in parallel.

III. RESULTS

A. System implementation

The implemented acquisition system is shown in Fig. 4 with
the blocks from Fig. 2 marked with text commentary. The

julio
XI Southern Conference on Programmable Logic SPL2023 47

Fig. 4: Photograph of the acquisition system.

Resource utilization
Total logic elements 1,845 / 49,760 (4 %)
Total registers 1446
Total memory bits 640 / 1,677,312 (<1 %)
Total PLLs 1 / 4 (25 %)

Timing Analysis
Maximum Frequency 125.2MHz

TABLE II: Implementation details for 10M50DAF484C7G
device.

summary of the total utilized resources of the programmable-
logic device is shown in table II. The timing results were
obtained with the Timing Analyzer tool from Intel’s Quartus
Prime software, for a 1200 mV 85C model.

B. Noise measurements

Noise measurement results are sown in Fig. 5 and Fig. 6.
In Fig. 5 two sets of values of the measured RTI noise

are shown joined by a full line: they correspond to the
noise of one channel at 1 kHz and 16 kHz ODRs for its 5
gain configurations. A higher gain results in lower RTI noise
since the contribution of stages after the programmable gain
amplifier has less weight. The effective noise reported in the
component’s datasheet is shown in small dots and it coincides
up to within a 5% with all measurements except the 16 kHz,
12x gain which consistently deviated with a 13% lesser noise.
In the same figure, the results of the averaged measurements
are shown in dashed line, verifying that a noise reduction was
indeed obtained. At a 1 kHz data rate, noise was reduced by
a factor of 2.9± 0.1, and at 16 kHz by 2.97± 0.08.

Noise measurements from the lower and higher gain con-
figurations (1 and 12) are further shown in Fig. 6, again
joined by a full line for the RTI noise of the single-channel
case, with markers at the 5 data rate configurations and small
point markers showing the component’s datasheet values. An
average noise reduction of 2.80± 0.05 was obtained for gain
1, and 3.04± 0.02 for gain 12.

1 2 4 8 12
Gain

10-1

100

101

R
T

I
no

is
e

[
 V

rm
s]

1 ch. 8 ch. avg.
1 kHz. 16 kHz

Fig. 5: Measured RTI noise for 1 kHz and 16 kHz data
rates at different gain configurations. The full line follows
measurements of a single channel and the dashed line the 8
channels averaged.

1 2 4 8 16
Data rate [kHz]

10-1

100

101

R
T

I
no

is
e

[
 V

rm
s]

1 ch. 8 ch. avg.
Gain 1 Gain 12

Fig. 6: Measured RTI noise for gain of 1 and 12 at different
data-rate configurations. The full line follows measurements of
a single channel and the dashed line the 8 channels averaged.

The results from Fig. 5 and Fig. 6 show that for ADS131E08
it is possible to reduce noise by channel averaging. The
reduction factor is slightly higher than the expected for the
8-channel average (

√
8 = 2.82) and could be explained

by a deviation from the simplified statistical assumptions
made, and the necessary use of an estimation of the standard
deviation. However, it is an indicator that there are no inter-
channel correlations preventing noise reduction. The lowest
measured reduction coincides with the theoretical value, and
it effectively extends the dynamic range by 9 dB.

julio
XI Southern Conference on Programmable Logic SPL2023 48

The absolute noise levels obtained by averaging show that
for biomedical signal measurement applications, no additional
amplification circuit would be needed at a frequency as high as
16 kHz to attain 1 µVrms, since all values for a gain of 12 are
below this limit. Moreover, a gain of 8 is sufficient to achieve
the target noise level at the 16 kHz rate. This is significant
since this data rate allows acquiring fast spike potentials with
a 4 kHz bandwidth present in invasive measurements [20]. The
9 dB DR extension for the fastest data rate takes the DR to
103 dB again above the desired values. On the other hand, the
low noise levels achieved on the lowest frequency settings,
for example, 0.19 µVrms for a 1 kHz ODR at gain 12 while
preserving a 117 dB DR, can be useful for electroencephalog-
raphy (EEG) measurements which present challenging low-
noise requirements [2] and in some cases benefit from DC-
coupled acquisition [21].

C. Biopotential measurements

In order to validate the operation of the system for real-time
biopotential acquisition, a set of in-vivo measurements were
performed.

First, an electrocardiogram (ECG) recording was taken
using a differential channel with active electrodes implemented
with OPA378 operational amplifiers (OAs) in buffer con-
figuration (gain of 1). Two standard adhesive wet Ag/AgCl
electrodes were placed frontally below the thorax and the DRL
on the waist. The system was configured with an output data
rate of 1 kHz and gain of 1. Measurements were taken 10
minutes after attaching the electrodes. The channel averaging
was first turned off producing the upper line from Fig. 7, and
then it was activated to perform the 8-channel average. The
result is shown in the lower trace of Fig. 7. In this case, the
noise floor was imposed by the measurement electrodes, and
the signals show a match validating the averaged configuration
acquisition capability.

Next, electromyography (EMG) measurements were con-
ducted by placing two dry electrodes on the forearm, affixed
with an elastic fabric band, and performing finger contractions.
The system was configured with a 16 kHz output data rate
and gain of 1. Fig. 8 shows the measurement results. A very
slight contraction was performed between seconds 0 and 2,
and a stronger contraction between seconds 5 and 8. An
effort to relax the muscles was instructed between these two
contractions, and within these segments the noise reduction
is observable despite the presence of the base noise floor of
the dry electrodes. In order to observe the properties of the
system, different passband filters were applied in Fig. 8a and
8b. In 8a a low-pass frequency of 4 kHz was used and the
noise reduction obtained with averaging is seen by inspection,
with a reduction factor of 2.1. Under these conditions, the
activity resulting from weaker contractions is not observable.
In Fig. 8b, standard band-pass filtering for superficial EMG
was used [3] and the signal quality improves, with a reduction
gained by averaging of 1.12. The bandwidth used in Fig. 8a is
excessive for superficial EMG but would be useful in invasive
EMG or electroneurography (ENG) measurements where the

15 16 17 18 19 20
Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

A
m

pl
itu

de
 [

m
V

]

Single channel

8-channel average

Fig. 7: Recording from ECG measurements.

full bandwidth of biopotential spikes up to 10 kHz can be
acquired [20].

IV. CONCLUSIONS

Noise reduction through the averaging of N = 8 channels of
a simultaneous sampling high-resolution Delta-Sigma analog-
to-digital converter was shown to be feasible and in the
order of the theoretical reduction for independent identically
distributed noise sources,

√
N . The capabilities of the imple-

mented system for real-time biomedical signal acquisition and
processing were demonstrated by a set of ECG and EMG in-
vivo recordings.

Considering the recommended noise floor for biomedi-
cal signal acquisition, the application of this method for
ADS131E08 Σ∆ ADC allows measuring with no additional
analog amplification besides the integrated programmable-
gain-amplifier for data rates of 4 kHz to 16 kHz, using a gain
setting of 12. Further, acquisition with a configuration of 1 kHz
data rate and gain of 1 is possible thus preserving the full
available dynamic range. In addition, the lowest noise floor
(for 1 kHz data rate and gain of 12) was reduced to 0.18 µVrms.

The presented method allowed reducing the equivalent input
voltage noise of the ADC by a factor of 2.8, extending the
measurement dynamic range by 9 dB. This technique can thus
be useful to reduce the noise floor in measurements using Σ∆
converters with no additional analog stages and to achieve
higher data rates without sacrificing signal quality.

REFERENCES

[1] AAMI, “Medical Electrical Equipment - Part 2-25: Particular Require-
ments For The Basic Safety And Essential Performance Of Electrocar-
diographs,” Association for the Advancement of Medical Instrumenta-
tion, Standard ANSI/AAMI/IEC 60601-2-25:2011 (R2016), 2016.

julio
XI Southern Conference on Programmable Logic SPL2023 49

0 2 4 6 8
Time [s]

-100

-50

0

50

100
A

m
pl

itu
de

 [
V

]
30-4000 Hz bandpass filter

(a)

0 2 4 6 8
Time [s]

-100

-50

0

50

100

A
m

pl
itu

de
 [

V
]

30-450 Hz bandpass filter

(b)

Fig. 8: Superficial EMG measurement recordings. The gray
line marks a single-channel measurement and the black line
marks a measurement performed using averaging. (a) and (b)
have different pass-band filters applied as described in the text.

[2] J. J. Halford, D. Sabau, F. W. Drislane, T. N. Tsuchida, and S. R. Sinha,
“American Clinical Neurophysiology Society Guideline 4: Recording
Clinical EEG on Digital Media,” The Neurodiagnostic Journal, vol. 56,
no. 4, pp. 261–265, Oct. 2016.

[3] R. Merletti and G. Cerone, “Tutorial. Surface EMG detection, condition-
ing and pre-processing: Best practices,” Journal of Electromyography
and Kinesiology, vol. 54, p. 102440, Oct. 2020.

[4] F. N. Guerrero and E. M. Spinelli, “Chapter 4: Biopotential acquisition
systems,” in Medicine-Based Informatics and Engineering, F. Simini and
P. Bertemes-Filho, Eds. Cham: Springer International Publishing, 2022,
pp. 51–79.

[5] T. Degen and H. Jäckel, “Enhancing interference rejection of pream-
plified electrodes by automated gain adaption.” IEEE transactions on
bio-medical engineering, vol. 51, no. 11, pp. 2031–9, Nov. 2004.

[6] F. N. Guerrero and E. M. Spinelli, “A two-wired ultra-high input
impedance active electrode,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 12, no. 2, pp. 437–445, 2018.

[7] D. Berry, F. Duignan, and R. Hayes, “An Investigation of the use of a
High Resolution ADC as a Digital Biopotential Amplifier,” 4th European
Conference of the International Federation for Medical and Biological
Engineering, pp. 0–6, 2009.

[8] X. Yang, J. Xu, M. Ballini, H. Chun, M. Zhao, X. Wu, C. Van Hoof,
C. M. Lopez, and N. Van Helleputte, “A 108 dB DR ∆−Σ-ΣM Front-
End With 720 mV pp Input Range and> ±300 mV Offset Removal
for Multi-Parameter Biopotential Recording,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 15, no. 2, pp. 199–209, 2021.

[9] Y. Jung, S. Kweon, H. Jeon, I. Choi, J. Koo, M. K. Kim, H. J. Lee, S. Ha,
and M. Je, “A wide-dynamic-range neural-recording ic with automatic-
gain-controlled afe and ct dynamic-zoom δσ adc for saturation-free

closed-loop neural interfaces,” IEEE Journal of Solid-State Circuits,
vol. 57, no. 10, pp. 3071–3082, 2022.

[10] J. Chen, X. Li, X. Mi, and S. Pan, “A high precision eeg acquisition
system based on the compactpci platform,” in 2014 7th International
Conference on Biomedical Engineering and Informatics. IEEE, 2014,
pp. 511–516.

[11] D. Liu, Q. Wang, Y. Zhang, X. Liu, J. Lu, and J. Sun, “Fpga-based real-
time compressed sensing of multichannel eeg signals for wireless body
area networks,” Biomedical Signal Processing and Control, vol. 49, pp.
221–230, 2019.

[12] P. M. Aziz, H. V. Sorensen, and J. Van der Spiegel, “An overview of
sigma-delta converters: How a 1-bit ADC achieves more than 16-bit
resolution,” IEEE Signal Processing Magazine, vol. 13, no. 1, pp. 61–
84, 1996.

[13] ADS131E0x 4-, 6-, and 8-Channel, 24-Bit, Simultaneously-Sampling,
Delta-Sigma ADC, Texas Instruments, 2017. [Online]. Available:
https://www.ti.com/document-viewer/ads131e08/datasheet

[14] O. Rompelman and H. Ros, “Coherent averaging technique: A tutorial
review Part 1: Noise reduction and the equivalent filter,” Journal of
Biomedical Engineering, vol. 8, no. 1, pp. 24–29, Jan. 1986.

[15] E. B. Loewenstein, “Reducing the Effects of Noise in a Data Acquisition
System by Averaging,” National Instruments, Application Note AN152,
2000.

[16] D. S. Lemons and P. Langevin, An introduction to stochastic processes
in physics: containing ”On the theory of Brownian motion” by Paul
Langevin, translated by Anthony Gythiel. Baltimore: Johns Hopkins
University Press, 2002, oCLC: ocm47716485.

[17] Jonny Doin, “SPI MASTER / SLAVE INTERFACE,” Aug. 2011.
[Online]. Available: https://opencores.org/projects/spi master slave

[18] F. N. Guerrero and E. Spinelli, “High gain driven right leg circuit for
dry electrode systems,” Medical Engineering and Physics, vol. 39, pp.
117–122, Jan. 2017, publisher: Elsevier Ltd.

[19] S. Nishimura, Y. Tomita, and T. Horiuchi, “Clinical application of an
active electrode using an operational amplifier,” IEEE Trans. Biomed.
Eng., vol. 39, no. 10, pp. 1096–1099, 1992.

[20] D. B. Sanders, K. Arimura, L. Cui, M. Ertaş, M. E. Farrugia, J. Gilchrist,
J. A. Kouyoumdjian, L. Padua, M. Pitt, and E. Stålberg, “Guidelines for
single fiber EMG,” Clinical Neurophysiology, vol. 130, no. 8, pp. 1417–
1439, Aug. 2019.

[21] P. Tallgren, S. Vanhatalo, K. Kaila, and J. Voipio, “Evaluation of
commercially available electrodes and gels for recording of slow EEG
potentials.” Clinical neurophysiology : official journal of the Interna-
tional Federation of Clinical Neurophysiology, vol. 116, no. 4, pp. 799–
806, Apr. 2005.

julio
XI Southern Conference on Programmable Logic SPL2023 50

Diseño en VHDL del algoritmo SOGI PLL SRF
usando sı́ntesis de alto nivel (HLS)
Alejandro Núñez Manquez

Universidad Nacional de San Luis
Facultad de Ciencias Fı́sico Matemáticas y Naturales

San Luis, Argentina
janyo12@gmail.com

Matı́n Murdocca
Universidad Nacional de San Luis

Facultad de Ciencias Fı́sico Matemáticas y Naturales
San Luis, Argentina

mmurdocc@gmail.com

Victor Yelpo
Universidad Nacional de San Luis

Facultad de Ciencias Fı́sico Matemáticas y Naturales
San Luis, Argentina

victoryelpo@gmail.com

Ivana Trento
Universidad Nacional de San Luis

Facultad de Ciencias Fı́sico Matemáticas y Naturales
San Luis, Argentina

trentoivana@gmail.com

Abstract—Los algoritmos de detección de fase son muy uti-
lizado para la sincronización de inversores con la red eléctrica
para la inyección de potencia a la misma. Estos algoritmos,
que generalmente están basados en PLL (Phase-Locked Loop)
o lazo de seguimiento de fase, permiten generar una señal cuya
fase está acoplada con la fase de la señal de entrada. A estos
algoritmos se les suma en su diseño el algoritmo SOGI (Second-
order Generalized Integrators) y transformadas Clarke y Park,
ampliamente utilizadas en sistemas de generación se señales
alternas.

En este trabajo se sintetiza uno de estos algoritmos usando
el método de sı́ntesis de alto nivel brindado por AMD Xilinx
mediante una de sus herramientas de desarrollo como lo es Vitis.
Para ello se toma un diseño realizado en diagrama de bloques y
se lo traduce código Cpp para su sı́ntesis.

Index Terms—SOGI, PLL, FPGA, HLS.

I. INTRODUCCIÓN

SON muchos los algoritmos de detección de fase que se
utilizan en la inyección de energı́a a la red eléctrica.

Estos algoritmos pueden ser implementados en código C++ u
otros lenguajes de programación para ser ejecutados en algún
microprocesador, obteniéndose las señales necesarias para el
acoplamiento de algún sistema generador de energı́a eléctrica
con la red.

Algunos microprocesadores que se utilizan para implemen-
tar estos algoritmos son los de la familia C2000 Delfino de
Texas Instrument [1] que poseen módulo de operaciones con
punto flotante en hardware, como ası́ salida PWM, conver-
sor analógico-digital (ADC) por encima de los 12.5 mega
muestras por segundo (MSPS) e instrucciones de funciones
trigonométricas de 1 a tres ciclos lo que los hace ideales para
este tipo de sistemas.

Pero, en la actualidad, las FPGA presentan mejores car-
acterı́sticas que les permiten ser más eficientes a la hora de
utilizarlas para el diseño de estos sistemas. El hardware mismo
pasa a ser más maleable a la hora de encontrar un diseño
óptimo.

En este trabajo se realiza el diseño de un módulo hardware
de un detector de fase usando el modelo SOGI PLL SRF. Para
ello primero se traduce a código C el diagrama de bloques,
y usando ese código, se genera el módulo usando la sı́ntesis
de alto nivel o HSL mediante la herramienta Vitis de AMD
Xilinx [2].

II. TRABAJOS RELACIONADOS

EN la actualidad hay muchos trabajos que abordan los
algoritmos de sincronización y acoplamiento de energı́a

a redes eléctricas, siendo este un tema muy activo.
En [3] el autor hace una comparativa de distintos algoritmos

de sincronización tanto monofásicos como trifásicos. Para la
simulación usa Simulink, de Matlab con los cuales logra tener
la respuesta del algoritmo a distintos tipos de fallas. También
logra ejecutar el algoritmo en el DSP TMS320F28335 de
Texas Instrument obteniendo las respuestas esperadas.

De la misma manera, en [4] el autor plantea los problemas
que representan la importancia de la sincronización de señales
de sistemas de comunicación, eliminación de ruidos o aten-
uación, retrasos a los cuales se busca soluciones eficientes
mediante la utilización de PLL, realizando una comparativa
entre dos de sus tipologı́as mediante simulación en Matlab y
Simulink.

En [5] el autor propone la elección de un algoritmo para
la estimación de ángulo de fase en función del desempeño
demostrado frente a distintas perturbaciones tı́picas de la red
de distribución para su implementación, basado en la técnica
Phase Locked-Loop (PLL).

En [6] los autores plantean el desarrollo de algoritmos
de sincronización que trabajen en conjunto con sistemas de
electrónica de potencia y sistemas de control, con la finalidad
de lograr que dos o más fuentes externas estén sincronizadas
entre sı́ y evitar daños en dispositivos finales; tomando como
objeto de estudio aquellos que son lazo de bloque de fase.

julio
XI Southern Conference on Programmable Logic SPL2023 51

En [7] los autores proponen la realización del modelo
dinámico en base a una representación a pequeña señal de un
inversor trifásico en un marco de referencia dq y su posterior
prueba en simulación de un arreglo fotovoltaico conectado a
la red con el fin de entregar la máxima potencia disponible a
la red eléctrica. Esto implico el diseño de un PLL digital para
establecer un referencia de sincronismo y ası́ caracterizar el
sistema con dos lazos de control para regular tanto el voltaje
de entrada y la corriente de salida.

En [8] el autor realiza el análisis del algoritmo de sin-
cronización p-PLL basado en la teorı́a de las potencias in-
stantáneas de Akagi inicialmente por medio de un estudio de
las principales caracterı́sticas de los métodos de sincronización
existentes y su utilización en sistemas trifásicos con el objetivo
de detectar correctamente el ángulo de fase de la componente
fundamental. Ası́, posteriormente, profundiza en detalles re-
specto a los procesadores de señales digitales enfocándose en
el módulo de evaluación ICETEK-LF2407-C el cual repre-
senta la plataforma en la cual desarrolla el algoritmo p-PLL.
Concluye, ası́ en una explicación sobre la construcción del
hardware y el software, ası́ como los resultados obtenidos en
las simulaciones y experimentos llevados a cabo.

Como se ha podido observar, en los trabajos analizados se
describe la necesidad de implementar la técnica Phase Locked-
Loop (PLL) para establecer una referencia de sincronismo
y lograr la sincronización entre una o más fuentes externas.
Adicionalmente, los trabajos presentados implementan dichos
algoritmos en lenguaje c y no en VHDL, por lo que no es
posible observar su funcionamiento en placas de desarrollo
que posean FPGA.

En este trabajo se propone traducir el diagrama de bloques
de un detector de fase como lo es el SOGI PLL SRF a código
C++ y sintetizarlo en lenguaje de descripción de hardware
usando la técnica HLS.

III. DETECTOR DE FASE SOGI PLL SRF

EL diagrama de bloques del algoritmo SOGI PLL SRF se
muestra en la figura 1.

Fig. 1. IP Generador de Fallas.

En el diagrama de bloques se pueden observar las partes que
conforman el algoritmo. La señal de entrada ingresa al bloque
SOGI, el cual se conecta con el bloque de la transformada
PARK. Luego sigue un controlador PI para finalizar en un
integrador. La salida de este integrador es la fase detectada de
la señal de entrada.

A. Generación de señal en cuadratura con un SOGI

Calculando las funciones de transferencias que entrega
el diagrama del SOGI, estas quedan como se ven en las
ecuaciones 1 y 2.

G(s) =
v′(s)

v(s)
=

kω′s

s2 + kω′s+ ω′2
(1)

Gq(s) =
qv′(s)

v(s)
=

ω′2

s2 + kω′s+ ω′2
(2)

Para poder implementar el SOGI en una FPGA se deben
discretizar las ecuaciones haciendo:

s =
2

T

z − 1

z + 1
(3)

Reemplazando, el SOGI discretizado queda:

H(z) =
v′(z)

v(z)
=

b0 + b1z
−1 + b2z

−2

a0 − a1z−1 − a2z−2
(4)

Hq(z) =
v′(z)

v(z)
=

c0 + c1z
−1 + c2z

−2

a0 − a1z−1 − a2z−2
(5)

donde

a0 = 1 (6)

a1 =
2(4− ω′2T 2

s)

2kω′Ts + ω′2T 2
s + 4

(7)

a2 =
2kω′Ts − ω′2T 2

s − 4

2kω′Ts + ω′2T 2
s + 4

(8)

b0 =
2kω′Ts

2kω′Ts + ω′2T 2
s + 4

(9)

b1 = 0 (10)

b2 = −b0 (11)

c0 =
ω′2T 2

s

2kω′Ts + ω′2T 2
s + 4

(12)

b1 = 2C0 (13)

b2 = c0 (14)

Para la codificación en C++ el SOGI queda

v’[0] = a1*v’[1] + a2*v’[2] +
b0*(v[0] - v[2]);

qv’[0] = a1*qv’[1] + a2*qv’[2] +
k*c0*(v[0] + 2*v[1] + v[2]);

Aplicando los mismos criterios para la transformada Park,
el controlador PI y para el integrador, la codificación en C++
queda:

//Transformada park
vq[0] = v’[0]*cos(tita[0]) +

qv’[0]*sin(tita[0]);

julio
XI Southern Conference on Programmable Logic SPL2023 52

//Controlador PI
pi_out[0] = pi_out[1] + (kp +

Ki*Ts/2)vq[0] + (ki*Ts/2-kp)*vq[1];

//Frecuencia de red
omega[0] = Wred + pi_out[0];

//Fase de red [integrador]
tita[0] = tita[1] + Ts*omega[1];

donde Ts es el periodo entre muestras, Wred es la velocidad
angular de la señal de red alterna, Kp y Ki son las constantes
del controlador PI y tita es el ángulo de fase detectado de la
señal de red de entrada.

B. Codificación del SOGI PLL SRF en c

Con lo obtenido en los párrafos anteriores se obtiene el
código en C++ del SOGI PLL SRF. Antes se reemplazan v′

por Vd sogi y qv′ por Vq sogi.

void sogi_pll_srf(
float Vred, //entrada señal de red
float *frecuencia, //salida frecuencia
float *fase, //salida fase
float *Vacoplada) //salida señal en fase
{

V[0] = Vred;
//Calcula salida del SOGI
Vd_sogi[0] = a1*Vd_sogi[1] + a2*Vd_sogi[2]

+ b0*(V[0] - V[2]);
Vq_sogi[0] = a1*Vq_sogi[1] + a2*Vq_sogi[2]

+ k*c0*(V[0] + 2*V[1] + V[2]);

//Transformada park
Vpark_q[0] = Vd_sogi[0]*cos(tita[0])

+ Vq_sogi[0]*sin(tita[0]);

//controlador PI
pi_out[0] = pi_out[1] + (kp + Ki*Ts/2)

Vpark_q[0] + (ki*Ts/2-kp)*Vpark_q[1];

//velocidad de fase de red
omega[0] = Wred + pi_out[0];

//Fase de red [integrador]
tita[0] = tita[1] + Ts*omega[1];

if(tita[0] > (2*pi)){
tita[0] -= 2*pi;
pi_out[0] = 0;

}

//salidas

*frecuencia = omega[0]/(2*pi);

*fase = tita[0];

*Vacoplada = Vd_sogi[0];

//actualiza arreglos
V[2] = V[1];
V[1] = V[0];
Vd_sogi[2] = Vd_sogi[1];
Vd_sogi[1] = Vd_sogi[0];
Vq_sogi[2] = Vq_sogi[1];
Vq_sogi[1] = Vq_sogi[0];
Vpark_q[1] = Vpark_q[0];
pi_out[1] = pi_out[0];
omega[1] = omega[0];
tita[1] = tita[0];
}

Para la prueba se diseñó otro código, el cual genera algunas
de las fallas tı́picas en la red eléctrica.

int main (int argc, char **argv) {
FILE *fp;
float Vred, frecuencia,

fase, Vacoplada,t=0;

fp=fopen("salida.txt","w");

//se genera señal con fallas
for(int i=0;i<16000;i++) {
if(i<4000){
//señal pura
ug = Vg*sqrt(2)*sin(w_net*t);
t += T_sample;

}else if(i>= 4000 && i<8000){
//señal con un hueco
ug = Vg*sqrt(2)*(1-0.4)*

sin(w_net*t);
t += T_sample;

}else if(i>= 8000 & i<12000){
//señal con salto de fase
ug = Vg*sqrt(2)*

sin(w_net*t+(pi/(6)));
t += T_sample;

}else if(i>= 12000 & i<16000){
//señal con cambio de frecuencia
ug = Vg*sqrt(2)*

sin((w_net+2*pi)*t);
t += T_sample;

}
//se llama a la función
//sogi_pll_srf
sogi_pll_srf(Vred, &frecuencia,

&fase, &Vacoplada);

//los resultados se guardan en un
//archivo de texto
fprintf(fp,"%1.4f %1.4f %1.4f

%1.4f\n", Vred, frecuencia,
fase, Vacoplada);

}

julio
XI Southern Conference on Programmable Logic SPL2023 53

fclose(fp);
return 0;

}

IV. S ÍNTESIS DEL ALGORITMO SOGI PLL SRF

Para la sı́ntesis del algoritmo se utilizó la herramienta Vitis
hls de Xilinx AMD. Esta herramienta permite cargar los
código en c o c++ de la función a sintetizar junto con el
archivo, también escrito en c o c++, para realizar el test.

Para cumplir con el diseño se deben cumplir cuatro pasos.
• Primer paso: se debe probar el módulo a sintetizar

con algún compilador. Puede ser cualquiera que compile
código c o c++.

• Segundo paso: una vez probado el código se debe
sintetizar para y orientar la sı́ntesis con algunas directivas
que pueden mejorar la respuesta o el uso de recursos del
hardware generado.

• Tercer paso: una vez obtenida la sı́ntesis se debe realizar
la cosimulación, es decir, probar el hardware generado
mediante la sı́ntesis.

• Cuarto paso: si la cosimulación fue correcta se genera
el módulo hardware.

En este trabajo se realizaron tres códigos para generar el
módulo hardware. En el primero se utilizaron variables del
tipo float, el segundo se utilizaron variables del tipo double
y el tercero se utilizaron variables del tipo punto fijo.

A. Simulaciones con compilador c

En estas simulaciones se utilizó el compilador Gcc de linux.
Los resultados se pueden observar en las figuras

Fig. 2. Simulación con variable tipo float usando compilador Gcc.

En las figuras 2, 3, 4 aparecen cuatro señales:
• En celeste la señal de entrada o prueba que está formada

por cuatro ciclos de señal sin falla, cuatro ciclos con falla
de hueco de tensión, cuatro ciclos con salto de fase y
cuatro ciclos con variación de frecuencia.

• En azul la señal alterna en fase generada por el SOGI
• En rojo el valor de la frecuencia. Es la señal que muestra

las perturbaciones del sistema al producirse la falla
• En naranja la señal de la fase detectada por el SOGI PLL

SRF. En la gráfica la señal está multiplicada por 10 para
que se pueda apreciar al lado de las otras señales.

Fig. 3. Simulación con variable tipo double usando compilador Gcc.

Fig. 4. Simulación con variable tipo fixed usando compilador Gcc.

B. Sı́ntesis del módulo SOGI PLL SRF

La sı́ntesis se ha realizado sin poner directivas. El diseño se
hizo para una frecuencia de clock de 100MHz, para la placa
ZedBoard Zynq Evaluation Developement Kit de Digilent [10]
basada en un SoC XC7Z020CLG484-1 de la serie Zynq 7000.

Los resultados de la sı́ntesis se pueden observar en la Tabla
I. En ella se puede observar la diferencia en recursos al usar
variables tipo flotantes y variables tipo doble. En el caso del
uso de variables tipo punto fijo se utilizó una variable de 48
bits con 24 bits para la parte decimal.

TABLE I
RECURSOS USADOS PARA DISTINTOS TIPOS DE VARIABLES

Variable BRAM DSP FF LUT URAM
Float - 28 4986 8469 -

Double 16 98 15797 19141 -
Fixed - 24 17784 26689

En la tabla II se pueden ver las latencias o cuantos ciclos
de reloj tarda cada diseño en devover un valor calculado.

TABLE II
LATENCIA DE CADA MÓDULO SEGÚN EL TIPO DE VARIABLE

Variable LATENCIA (NS) LATENCIA (CICLOS)
Float 930 93

Double 1.840 184
Fixed 820 82

julio
XI Southern Conference on Programmable Logic SPL2023 54

C. Cosimulación del módulo en sus distintas variantes

La cosimulación del módulo diseñado en los tres tipos de
variables coincidió con la simulación usando el compilador
Gcc, la cual se puede observar en las figuras 5, 6 y 7.

Fig. 5. Co-simulación con variable tipo float.

Fig. 6. Co-simulación con variable tipo double.

Fig. 7. Co-simulación con variable tipo fixed.

D. Generación del IP

En las figuras 8, 9 y 10 se pueden observar los IPs
generados.

Los puertos generado son:
• ap start, ap done, ap idle y ap ready: puertos de control

generados automáticamente. De estos puertos se utiliza el
puerto ap start para ir generado los valores que hacen a
la señal alterna de salida.

• ap clk y ap rst n: reloj y reset.
• Vred: señal de entrada alterna de la red.
• frecuencia ap vld: validación de la señal frecuencia.

Fig. 8. IP SOGI PLL SRF diseñado con variables tipo float

Fig. 9. IP SOGI PLL SRF diseñado con variables tipo double

• fase ap vld: validación de la señal fase.
• Vacoplada ap vld: validación de la señal Vacoplada.
• frecuencia: puerto por donde sale la señal frecuencia.
• fase: puerto por donde sale la señal fase.
• Vacoplada: puerto por donde sale la señal Vacoplada.

V. CONCLUSIONES

Este trabajo ha permitido realizar un diseño de un bloque
hardware de un seguidor de fase el cual se ha realizado de
forma sencilla. Esto permite que en poco tiempo se tenga un
módulo harware funcional y de rápida implementación.

En el caso de los puertos de entrada y salida se ha
dejado que sean del ancho del tipo de variable que se estaba
utilizando. Esto se puede modificar en el diseño.

Fig. 10. IP SOGI PLL SRF diseñado con variables tipo fixed

julio
XI Southern Conference on Programmable Logic SPL2023 55

REFERENCES

[1] Delfino™ Premium Performance mcus (2020) TI Training. Avail-
able at: https://training.ti.com/delfino-premium-performance-mcus (Ac-
cessed: December 14, 2022).

[2] Vitis software platform (no date) Xilinx. Available at:
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
(Accessed: December 14, 2022).

[3] Daniel Serrano Dominguez. Análisis comparativo de téctnicas de sin-
cronización con la red eléctrica. Trabajo Final de Carrera. Universidad
de Sevilla. Julio 2014.

[4] Cynthia Manosalvas Pillajo. Diseño e Implementación de un lazo de
enganche de fase (PLL) en un microcontrolador. Trabajo Final de
Carrera. Universidad de Zaragoza. 2019.

[5] Algoritmos de detección de fase para sincronización y control de
frecuencia de central micro hidráulica plug & play. Trabajo final de
carrera. Carlos Patricio Aedo Paredes. Universidad de Chile. Julio 2014

[6] Andrés Antonio Segovia Vásquez. Implementación y análisis de algo-
ritmos de sincronización de fase, para fuentes de energı́a renovables
en sistemas trifásicos. Trabajo de titulación previo a la obtención del
tı́tulo de Ingeniero en Electrónica y Telecomunicaciones. Universidad
de Cuenca. Julio 2021.

[7] César Augusto Prieto Suárez; Juan David Peña Alvarado. Diseño y
Simulación de las Diferentes Etapas de Control en una Micro red
Eléctrica. Proyecto Curricular de Ingenierı́a Electrónica. Universidad
Distrital Francisco José de Caldas. 2018.

[8] Alejandro Méndez Samper. Implementación y simulación del algoritmo
de sincronización p-PLL mediante un DSP LF2407A. Trabajo de
Diploma para optar por el tı́tulo de Ingeniero Electricista. Universidad
Tecnológica de La Habana. Junio 2016.

[9] Antonella Nagliero, Rosa Mastromauro, Marco Liserre,
Antonio Dell’Aquila. (2010). Monitoring and synchronization
techniques for single-phase PV systems. 1404 - 1409.
10.1109/SPEEDAM.2010.5545057.

[10] ZedBoard - Digilent Reference. Available at:
https://digilent.com/reference/programmable-logic/zedboard/start
(Accessed: December 14, 2022).

julio
XI Southern Conference on Programmable Logic SPL2023 56

Generador de fallas para pruebas de algoritmos de
sincronización con la red eléctrica monofásica

Alejandro Núñez Manquez
Universidad Nacional de San Luis

Facultad de Ciencias Fı́sico Matemáticas y Naturales
San Luis, Argentina
janyo12@unsl.edu.ar

Julio Dondo Gazzano
Universidad Nacional de San Luis

Facultad de Ciencias Fı́sico Matemáticas y Naturales
San Luis, Argentina
jdondo@gmail.com

Estrella Gómez Orozco
Universidad Nacional de San Luis

Facultad de Ciencias Fı́sico Matemáticas y Naturales
San Luis, Argentina

estrellagomez08@gmail.com

Carlos F. Sosa Paez
Universidad Nacional de San Luis

Facultad de Ciencias Fı́sico Matemáticas y Naturales
San Luis, Argentina
sosapaez@gmail.com

Abstract—Uno de los campos de estudio actuales es el
acoplamiento entre sistemas generadores de energı́a eléctrica
alterna. En este tipo de acoplamiento es necesaria la detección de
unos atributos de la tensión de la red a la cual se desea acoplar,
los cuales son el ángulo de fase y la amplitud de la señal o
señales de tensión según el sistema el cual puede ser monofásico
o trifásico.

En este trabajo se diseñará un banco de prueba de algorit-
mos de sincronización implementado en FPGA. Este banco de
prueba permite configurar distintas fallas en la red como por
ejemplo huecos, salto de fase, salto de frecuencia y aparición de
armónicos. Los algoritmos a probar se implementan en lenguaje
c y mediante la técnica HLS (Higth Level Syntesis) se convierte
a VHDL para su implementación en una FPGA.

Index Terms—SOGI, PLL, FPGA, HLS.

I. INTRODUCCIÓN

LA producción de la energı́a eléctrica siempre ha sido un
tema central en el desarrollo de cada paı́s. Con el avance

de la tecnologı́a se ha logrado que la producción de la misma
esté más al alcance del público en general permitiendo que
se pueda sustentar una vivienda con la producción propia de
energı́a, la cual puede ser solar, eólica, etc. Esto a generado
sistemas hı́bridos los cuales pueden usar tanto la energı́a
proveniente de la red eléctrica implementada por las empresas
productoras y/o distribuidoras de la misma como por la propia
producción de energı́a del usuario.

En el caso de que un usuario genere energı́a que no la pueda
acopiar usando baterı́as, esa energı́a se puede inyectar a la red
eléctrica para lo cual se debe acoplar a la misma usando alguna
técnica de acoplamiento.

En la actualidad hoy muchas técnicas de acoplamiento de
energı́a, tanto para sistemas monofásico como para sistemas
trifásicos. Estas técnicas detectan el ángulo de fase de la red
como su amplitud, datos necesarios para el acoplamiento.
También estos datos deben estar acoplados en un tiempo
menor al periodo de la red electrica a la cual se desea acoplar.

Para ello se han diseñado muchos algoritmos que logran estos
objetivos.

En este trabajo se va a sintetizar en VHDL un banco
de pruebas para generar tipos de fallas propias de una red
eléctrica. Junto a la sı́ntesis del generador de fallas se sintetiza
uno de los tantos algoritmos de detección de fase, en este
trabajo se utiliza el algoritmo SOGI PLL SRF.

II. TRABAJOS RELACIONADOS

SON muchos los trabajos que abordan los algoritmos
de sincronización y acoplamiento de energı́a a redes

eléctricas.
En [1] el autor hace una comparativa de distintos algoritmos

de sincronización tanto monofásicos como trifásicos. Para la
simulación usa Simulink, de Matlab con los cuales logra tener
la respuesta del algoritmo a distintos tipos de fallas. También
logra ejecutar el algoritmo en el DSP TMS320F28335 de
Texas Instrument obteniendo las respuestas esperadas.

De la misma manera, en [2] el autor plantea los problemas
que representan la importancia de la sincronización de señales
de sistemas de comunicación, eliminación de ruidos o aten-
uación, retrasos a los cuales se busca soluciones eficientes
mediante la utilización de PLL, realizando una comparativa
entre dos de sus tipologı́as mediante simulación en Matlab y
Simulink.

En [3] el autor propone la elección de un algoritmo para
la estimación de ángulo de fase en función del desempeño
demostrado frente a distintas perturbaciones tı́picas de la red
de distribución para su implementación, basado en la técnica
Phase Locked-Loop (PLL).

En [4] los autores plantean el desarrollo de algoritmos
de sincronización que trabajen en conjunto con sistemas de
electrónica de potencia y sistemas de control, con la finalidad
de lograr que dos o más fuentes externas estén sincronizadas
entre sı́ y evitar daños en dispositivos finales; tomando como
objeto de estudio aquellos que son lazo de bloque de fase.

julio
XI Southern Conference on Programmable Logic SPL2023 57

En [5] los autores proponen la realización del modelo
dinámico en base a una representación a pequeña señal de un
inversor trifásico en un marco de referencia dq y su posterior
prueba en simulación de un arreglo fotovoltaico conectado a
la red con el fin de entregar la máxima potencia disponible a
la red eléctrica. Esto implico el diseño de un PLL digital para
establecer un referencia de sincronismo y ası́ caracterizar el
sistema con dos lazos de control para regular tanto el voltaje
de entrada y la corriente de salida.

En [6] el autor realiza el análisis del algoritmo de sin-
cronización p-PLL basado en la teorı́a de las potencias in-
stantáneas de Akagi inicialmente por medio de un estudio de
las principales caracterı́sticas de los métodos de sincronización
existentes y su utilización en sistemas trifásicos con el objetivo
de detectar correctamente el ángulo de fase de la componente
fundamental. Ası́, posteriormente, profundiza en detalles re-
specto a los procesadores de señales digitales enfocándose en
el módulo de evaluación ICETEK-LF2407-C el cual repre-
senta la plataforma en la cual desarrolla el algoritmo p-PLL.
Concluye, ası́ en una explicación sobre la construcción del
hardware y el software, ası́ como los resultados obtenidos en
las simulaciones y experimentos llevados a cabo.

Como se ha podido observar, en los trabajos analizados se
describe la necesidad de implementar la técnica Phase Locked-
Loop (PLL) para establecer una referencia de sincronismo
y lograr la sincronización entre una o más fuentes externas.
Sin embargo, estos algoritmos de sincronización no siempre
cuentan con la versatilidad de configuración que permite
implementar distintas fallas en la red en un mismo banco de
prueba. Adicionalmente, los trabajos presentados implementan
dichos algoritmos en lenguaje c y no en VHDL, por lo que
no es posible observar su funcionamiento en placas FPGA.

En este trabajo se propone un banco de prueba reconfig-
urable que toma en cuenta todas las fallas en la red (huecos,
salto de fase, salto de frecuenncia y aparición de armónicos)
y que además de implementarse en c, mediante la técnica
HLS es fácilmente convertible a VHDL para su posterior
implementación en FPGA.

III. GENERADOR DE FALLAS

PARA la prueba de los algoritmos de detección de fase es
necesario inyectarles las señales tı́picas de fallas en redes

eléctricas para verificar su desempeño. Estas fallas pueden ser:
• Huecos de tensión: es una disminución brusca de la

tensión de alimentación a un valor situado entre el
90% y el 1% de la tensión declarada, seguida de un
restablecimiento de la tensión después de un corto lapso
de tiempo. Por convenio un hueco dura entre 10 ms a
1 minuto. El generador debe generar estos huecos de
tensión, aunque la duración de los mismos se fijará en
5 ciclos de la frecuencia de la red.

• Variación de frecuencia: dependiendo del lugar de donde
sea la red eléctrica, la frecuencia nominal puede ser
de 50 Hz o de 60 Hz. No obstante esta frecuencia
puede variar dependiente de los desequilibrios que se
produzcan entre la generación y la carga. Para las pruebas

el generador debe poder generar perturbación de este tipo
con variaciones de frecuencia que no superen el 10% de
la frecuencia nominal.

• Variación de fase: es un salto abrupto de la fase del
sistema generando con ello una falla. El generador debe
poder generar un salto de fase de hasta

π

4
rad

• Armónicos: la tensión armónica es una tensión que se
suma a la tensión nominal con una frecuencia múltiplo
de la frecuencia nominal. Generalmente los armónicos
que se encuentran y que más destacan en la red eléctrica
son los terceros, quintos y séptimos. El generador debe
poder generar armónicos con un módulo de hasta el 10%
de la tensión de la fundamental.

De acuerdo a las fallas estipuladas en las lı́neas de trans-
misión se diseña el código del generador de fallas que permite,
mediante el cambio de estado de algunos parámetros, generar
tantas fallas en simultáneo como se desee, ası́ como la inten-
sidad de las mismas.

A. Diseño del generador de fallas con HLS

Para el diseño de este bloque se utilizó un código pro-
gramado en C y sintetizado en Vivado-HLS. Dicho código
posee seis entradas correspondientes a las fallas indicadas en
el párrafo anterior. Además se incluye una entrada de dos
bits para controlar la variación de fase, de frecuencia y el
módulo de los huecos de tensión. El control se diseña de esta
forma para utilizar los recursos que posee la placa en donde
se implementa el sistema.

1) Generación de la falla hueco de tensión: Para imple-
mentar esta falla se la debe habilitar desde el módulo control.
Además se debe seleccionar con qué módulo se activa la falla.
En el código se puede observar la configuración de la misma.

if(falla_hueco == 0){
tensionSalida = 1;

}else{
if(modulo==0){

tensionSalida = 0.9;
}else if(modulo==1){

tensionSalida = 0.8;
}else if(modulo==2){

tensionSalida = 0.6;
}else{

tensionSalida = 0.4;
}

}

En la Figura 1 se observa la salida de la señal generada.
2) Generación de la falla por variación de frecuencia:

Asimismo, en el generador de fallas se ve contemplada la
variación de frecuencia como otra de las posibles fallas. En el
código se puede observar la configuración de la misma.

if(falla_frecuencia == 0){
delta_frecuencia = 0;

}else{
if(modulo==0){

julio
XI Southern Conference on Programmable Logic SPL2023 58

Fig. 1. Falla hueco con un valor del 60% del valor nominal.

delta_frecuencia = 1%;
}else if(modulo==1){

delta_frecuencia = 3%;
}else if(modulo==2){

delta_frecuencia = -1%;
}else{

delta_frecuencia = -3%;
}

}

En la Figura 2 se observa la salida de la señal generada.

Fig. 2. Falla de frecuencia con un cambio del 1% menos del valor nominal

3) Generación de la falla por salto de fase: En cuanto a
la variación de fase, el procedimiento es similar al descrito
previamente.

if(falla_fase == 0){
delta_fase = 0;

}else{
if(modulo==0){

delta_fase = pi/6;
}else if(modulo==1){

delta_fase = pi/4;
}else if(modulo==2){

delta_fase = pi/3;
}else{

delta_fase = pi/2;
}

}

En la Figura 3 se observa la salida de la señal generada.
4) Generación de la falla por armónicos: La configuración

de la falla por armónicos se muestra en el siguiente código:

Fig. 3. Falla de fase con un salto de 60 grados.

if(f_arm3 == 0){
mod_arm3 = 0;

}else{
mod_arm3 = 0.1*tensionSalida;

}

if(f_arm5 == 0){
mod_arm5 = 0;

}else{
mod_arm5 = 0.1*tensionSalida;

}

if(f_arm7 == 0){
mod_arm7 = 0;

}else{
mod_arm7 = 0.1*tensionSalida;

}

En la Figura 4 se observa la salida de la señal sumados los
tres armónicos generados.

Fig. 4. Falla por inyección de armónicos.

El código de salida del generador de falla se muestra a
continucación

if(cont <5000){
fase_a = sinf(w*t);
}else{
fase_a = V_mod*sinf(w*t + delta_fase) + mod_3*sinf(3*(w*t + delta_fase)) + mod_5*sinf(5*(w*t + delta_fase)) + mod_7*sinf(7*(w*t + delta_fase));
}

B. Generación del IP
En la figura 5 se puede observar el IP generado. El mismo

posee conexión con el Bus AXI para el control de la inyección

julio
XI Southern Conference on Programmable Logic SPL2023 59

de fallas.

Fig. 5. IP Generador de Fallas.

Los puertos generado son:

• ap start, ap done, ap idle y ap ready: puertos de control
generados automáticamente. De estos puertos se utiliza el
puerto ap start para ir generado los valores que hacen a
la señal alterna de salida.

• modFalla: puerto desde donde se configura el valor de la
falla para falla por hueco de tensión, falla por variación
de frecuencia y falla por salto de fase.

• f hueco: puerto para habilitar o deshabilitar la falla por
hueco de tensión.

• f fase: puerto para habilitar o deshabilitar la falla por
salto de fase.

• f frec: puerto para habilitar o deshabilitar la falla
variación de frecuencia.

• f arm3, f arm5 y f arm7: puertos para habilitar o desha-
bilitar las fallas por componentes armónicas.

• ap clk y ap rst n: reloj y reset.
• T a: puesto por donde sale la señal generada.
• T a ap vld: control de validación de la señal de salida.

IV. DETECTOR DE FASE SOGI PLL SRF

PARA la prueba del banco se sintetizó en HLS el detector
de fase SOGI PLL SRF, que se muestra en la figura 6.

Fig. 6. IP Generador de Fallas.

Para ello se tuvo que convertir a código C el diagrama de
bloques, el cual se probó para ver su respuesta, la cual se
muestra en la figura 7.

Fig. 7. Respuesta del SOGI PLL SRF ante una señal de entrada con falla de
hueco de tensión.

En esta gráfica se pueden observar las siguientes señales:
• En azul: señal alterna de entrada con una falla por hueco

de tensión.
• En rojo: señal de salida correspondiente a la frecuencia

de la señal de entrada, en este caso 50 Hz.
• En naranja: señal de salida correspondiente a la fase de

la señal de entrada.
obteniéndose el módulo que se observa en la figura 8.

Fig. 8. IP Generador de Fallas.

Los puertos generado son:
• ap start, ap done, ap idle y ap ready: puertos de control

generados automáticamente. De estos puertos se utiliza el
puerto ap start para ir generado los valores que hacen a
la señal alterna de salida.

• ug: puerto de entrada de 16 bits.
• ap clk y ap rst n: reloj y reset.
• f out: salida del valor de frecuencia de la señal
• theta out: Fase de la señal alterna.
• adc: Señal de entrada al módulo que se saca como salida

para la comparación con la señal theta out.

V. SISTEMA PROPUESTO

EL sistema propuesto consta de un generador de fallas y
un detector de fase implementando el algoritmo SOGI

PLL SRF. En la figura 9 se pueden observar los bloques que
son parte del sistema.

julio
XI Southern Conference on Programmable Logic SPL2023 60

Fig. 9. Diagrama de bloques del sistema completo.

Para poder generar la señal alterna la señal de salida del
generador de fallas se conecta con un módulo PWM que toma
esa señal y genera una alterna PWM. Esa señal alterna es
filtrada mediante un filtro RC con un frecuencia de corte de
400 Hz.

La señal alterna es capturada por un conversor analógico
digital e ingresada al módulo SOGI PLL SRF. Las señales
que estrega este módulo se conectan a un conversor digital
analógico.

A. Diseño del hardware del sistema propuesto

La implementación del generador de fallas antes men-
cionado no podrı́a existir sin un sistema que lo complemente
y que le permita cumplir su tarea. En la Figura 10 se observa
el Diagrama de bloques propuesto, en el cual se distinguen
tres bloques principales sobre los que se profundiza: el bloque
Generador de fallas, el bloque PWM y el bloque SOGI-PLL.

Además de los bloques antes mencionados, se incluyen un
bloque ctrl switch y ctrl leds; el primero permite habilitar
o deshabilitar las fallas deseadas y el segundo indica cuál
es la configuración del bloque Generador de fallas en cada
momento. También se incluyen un bloque PmodADC y un
bloque PmodDAC.

• Generador de fallas: este bloque genera una señal
monofásica controlada. Su salida es la señal Ta que
alimenta al bloque PWM, cuyo rango es desde -1 a 1.

• PWM: Este bloque tiene como entrada la señal generada
por el bloque Generador de fallas y genera la señal
PWM correspondiente. También genera el pulso de inicio
(ap start) del Generador de fallas y del SOGI PLL SRF.
La señal PWM de salida alimenta un filtro RC pasa bajas
con una frecuencia de corte de 400 Hz.

• PmodADC: este bloque digitaliza la salida del filtro RC.
Su salida alimenta al bloque SOGI PLL SRF.

• SOGI PLL SRF: Este bloque tiene como entrada la señal
generada por el bloque PmodADC. Tiene como salidas
corresponden la fase capturada de la señal alterna, el valor
de la frecuencia de esa señal y la señal ADC de entrada
a este bloque para control. Estas señales son ingresadas
al bloque PmodDAC.

• PmodDAC: este bloque permite mostrar por osciloscopio
las señales generadas por el bloque SOGI PLL SRF.

VI. CONFIGURACIÓN PROPUESTA

LA placa de desarrollo utilizada en este trabajo es la
ZedBoard Zynq Evaluation Developement Kit [6] de Dig-

ilent basada en un SoC XC7Z020CLG484-1 de la serie Zynq
7000. La placa está equipada con osciladores de 33,333MHz
para el PS y de 100MHz para la PL, 5 conectores para

Fig. 10. Sistema propuesto diseñado en Vivado.

módulos Digilent Pmod™ de 2x6 pines (1 conectado al PS
y 4 conectados al PL), 2 botones de reinicio (1 para PS y 1
para PL), 7 pulsadores (2 para PS y 5 para PL), 8 interruptores
(PL) y 9 LED (1 para PS y 8 para PL), interfaces USB-JTAG
para programación y depuración. El kit se muestra en la figura
11.

La PL del SoC posee un Xilinx Artix®-7 FPGA que
contiene 85000 celdas lógicas, 53200 LUT, 106400 FF, 560KB
de bloques RAM extensibles y 220 bloques DSP programables
con sumadores/acumuladores de 48 bits, multiplicadores con
signo de 18x25, y pre-sumadores de 25 bits capaces de operar
a 741MHz con un desempeño pico para un FIR simétrico de
276GMAC.

El PS del SoC se basa en un dual-core ARM® Cortex™-
A9 de 2.5DMIPS/MHz por CPU, arquitectura ARMv7-A,
NEON™ media-processing engine, Vector Floating Point Unit
(VFPU) de simple y doble precisión, temporizadores, varias
cachés, memorias on-chip ROM de booteo, 256KB de RAM
(OCM), UART de hasta 1Mb/s e I2C M/S), alto BW de
conectividad entre PS y PL, ARM AMBA® basado en AXI,
etc. Para la versión -1 del XC7Z020, el reloj del CPU puede
operar hasta 667MHz.

VII. PRUEBAS Y RESULTADOS.

LOS Los módulos Generador de Fallas y SOGI PLL
SRF fueron probados de forma individual durante el pro-

ceso de diseño usando la herramienta vitis hls de Xilinx, cuyas
respuestas han sido mostradas en las secciones anteriores.

Una vez diseñado los módulos necesarios antes comen-
tados se conectaron usando la herramienta vivado de Xil-
inx,generando el hardware del sistema para su prueba

La primer prueba que se realizó fue con una señal sin fallas
cuyas gráficas se muestran en las figuras 12.

La segunda prueba se realizó generando una falla por hueco
de tensión, la cual se puede observar en la figura 13

Las demás fallas se muestran en las figuras 14, 15, 16

julio
XI Southern Conference on Programmable Logic SPL2023 61

Fig. 11. ZedBoard Zynq Evaluation Developement Kit de Digilent

Fig. 12. Señal de red sin fallas.

Fig. 13. Señal de red con falla por hueco de tensión

Fig. 14. Señal de red con falla por salto de fase.

REFERENCES

[1] Daniel Serrano Dominguez. Análisis comparativo de téctnicas de sin-
cronización con la red eléctrica. Trabajo Final de Carrera. Universidad
de Sevilla. Julio 2014.

[2] Cynthia Manosalvas Pillajo. Diseño e Implementación de un lazo de
enganche de fase (PLL) en un microcontrolador. Trabajo Final de
Carrera. Universidad de Zaragoza. 2019.

[3] Algoritmos de detección de fase para sincronización y control de
frecuencia de central micro hidráulica plug & play. Trabajo final de
carrera. Carlos Patricio Aedo Paredes. Universidad de Chile. Julio 2014

Fig. 15. Señal de red con falla por cambio de frecuencia.

Fig. 16. Señal de red con falla por componente armónico.

[4] Andrés Antonio Segovia Vásquez. Implementación y análisis de algo-
ritmos de sincronización de fase, para fuentes de energı́a renovables
en sistemas trifásicos. Trabajo de titulación previo a la obtención del
tı́tulo de Ingeniero en Electrónica y Telecomunicaciones. Universidad
de Cuenca. Julio 2021.

[5] César Augusto Prieto Suárez; Juan David Peña Alvarado. Diseño y
Simulación de las Diferentes Etapas de Control en una Micro red
Eléctrica. Proyecto Curricular de Ingenierı́a Electrónica. Universidad
Distrital Francisco José de Caldas. 2018.

[6] Alejandro Méndez Samper. Implementación y simulación del algoritmo
de sincronización p-PLL mediante un DSP LF2407A. Trabajo de
Diploma para optar por el tı́tulo de Ingeniero Electricista. Universidad
Tecnológica de La Habana. Junio 2016.

[7] Antonella Nagliero, Rosa Mastromauro, Marco Liserre,
Antonio Dell’Aquila. (2010). Monitoring and synchronization
techniques for single-phase PV systems. 1404 - 1409.
10.1109/SPEEDAM.2010.5545057.

julio
XI Southern Conference on Programmable Logic SPL2023 62

Acceleration of a Dense monocular Localization
System using FPGAs

Abstract—In this work, we accelerate a dense monocular pose
estimation system by leveraging the computation capabilities
of FPGAs. In a dense monocular setting, pose estimation is
usually defined as an minimization problem, where the function
to minimize is defined as the normed difference between the
observed image and a corresponding image constructed using
the estimated pose and a model of the scene. This minimization
problem is solved by using a gradient descent method, for
example the levenberg-marquardt algorithm. In a dense setting,
this requires to compute for every level of detail, for every
iteration and for every pixel, the gradient and the hessian of
the model with respect to the unknown pose. Also, high frame
rates are required in settings where fast and complex camera
movements are present, for example for UAV navigation systems.
As as consequence, this problem is computationally complex.
We accelerate the pose estimation by using the vitis high level
synthesis tool, which allows to describe the FPGAs functionality
by using C/C++ programming languages. We apply several
optimizations and implement the system using a Zynq Ultrascale
MPSoC. We compare our results to a pure CPU solution.

Index Terms—Pose estimation, Visual Odometry, FPGAs

I. INTRODUCTION

Currently, robotic systems are in the process of becoming
ubiquitous in everyday life. Self driving cars and autonomous
vacuum cleaners have commercial products with good perfor-
mance and are available to middle income costumers world-
wide. This shows that there is a clear tendency to continue to
use robotics in evermore challenging problems and situations,
which require that the robot is in possession, or can acquire,
a deep understanding of its surrounding state, and be capable
to act upon this information.

The knowledge of a robot pose in relation to the environ-
ment in which it must operate is one of the most crucial
pieces of knowledge that it must have. Mathematically, this
pose belongs to the SE(3) Lie group. It has six degrees of
freedom, three of which are related to its position and three
to its attitude. In some settings, knowledge of several of these
posses must be known to fully describe the robots state. For
example, in a robotic manipulator, each of its links has a
distinct SE(3) pose. But, nevertheless, the problem can still be
described as the estimation of several SE(3) poses. Thus the
pose estimation problem in robotics is particularly important.

When the main sensor is a monocular camera, there are
already some well established algorithms to recover the poses
from several frames captured at different positions [1]. These
algorithms have a first stage of image pre-processing to
recover a sparse representation of the scene using its most
salient features. Common feature extraction and description
algorithms usually used in state-of-the-art systems [2] are SIFT

[3] and SURF [4]. After extraction, each feature has a R2

position in the image, that depends on the unknown pose of
the observing camera, and a corresponding R3 position in a
common-to-all-cameras reference system.

In a second stage, every R2 feature observed in a frame
is matched with the same R2 feature observed from another
camera pose. Then a minimization problem is constructed,
usually called bundle adjustment, with a cost function defined
as the normed difference between the R2 pixel position of the
features observed in each frame, and the R2 feature position
given by the model of the scene, namely by the unknown
camera poses and the R3 position of each of the features.

The main drawback of bundle adjustment methods is that
they require the 2 pre-processing stages of feature extraction
and feature matching. These are normally highly specialized
algorithms, in order to perform well specific scene conditions.
In this regard, several attempts have arisen in the literature
to replace these handcrafted feature extraction and matching
algorithms with ones automatically learned by techniques such
as deep learning [5].

Other problem is the space nature of the algorithm. The
whole of the information present in the image is not used, but
a subset represented by the detected features. This information
can be sometimes poor, such as in low-gradient images, where
very low quantity of features are detected, and in turn making
the bundle-adjustment pose estimation difficult.

Other pose estimation systems [6] [7] avoid using these fea-
ture extraction pre-processing stages, and instead use directly
the values of the pixels observed by the camera.

Again, with the raw pixel observations a minimization
problem is crafted, this time the cost function is composed of
the normed difference between the raw pixel measurements
and the pixel estimation made from the unknown poses of the
cameras and a model of the scene. This way, these methods
can naturally use every observation made by every pixel to
estimate the pose.

However, dense methods require more computing power.
This is due to the fact that the gradient and the hessian must
be computed for every observed pixel, instead that for every
feature extracted from the image.

To mitigate this problem both [6] and [7] use a subset of
all the image pixels, by using a strategy to select pixel to be
used for the pose estimation. But clearly this undermine the
potential robustness gained by these systems that are capable
to use every pixel in the image, even those coming from almost
flat shaded section of the scene, with contain very low gradient
and so very low, but potentially important, information.

julio
XI Southern Conference on Programmable Logic SPL2023 63

In this work, we propose to utilize FPGAs to accelerate
a dense monocular pose estimation system. Using High Level
Synthesis, we describe the processing system using C and C++
programming languages. We implement several optimization
to the baseline code specifically aimed for the FPGA. The
proposed pose estimation system is aimed to process 640x480
images in under 60ms, to achieve 15fps.

II. MATHEMATICAL BACKGROUND

The cost function takes the following form:

C(Pf) =
∑
u∈s

∥e(u)∥h

e(u) = If (up(Pf , u))− Ikf (u)

(1)

Where Pf ∈ SE(3) is the unknown pose of the f frame
which we want to estimate, If ∈ Rw·h is the corresponding
image observed by the f frame of width w and height h,
Ikf ∈ Rw·h if a reference frame, for which we known its
pose Pkf (or we define its pose as the identity pose) and have
for each of its pixels u = (u1, u2) ∈ R2 the inverse depth
id, the distance in the z direction between the focal point and
the corresponding R3 point for a particular pixel u. Finally,
up(Pf , u) is the corresponding pixel in the frame f which
depends on the particular pixel u in kf and the pose Pf , and
∥∥h is the huber norm.

The coordinates of the pixel up in the f frame, correspond-
ing to the pixel u as seen from the frame of reference kf can
be calculated using

up(Pf , u) = π(Kpf)

pf = PfPkfK
−1π−1(u)/id(u)

(2)

where π(x, y, z) = (x/z, y/z), π−1(u1, u2) = (u1, u2, 1),
and

K =

fx 0 cx
0 fy cy
0 0 1

 (3) K−1 =

ifx 0 icx
0 ify icy
0 0 1

 (4)

is the camera intrinsic matrix and its inverse, respectively.
To estimate Pf we use the Levenberg-Mardquat algorithm to
solve (1). The jacobian Jk =

∂If
∂Pk

f

, for the kth iteration is
computed using

Jk(u) = (P k
0 (u), P

k
1 (u), P

k
2 (u), P

k
3 (u), P

k
4 (u), P

k
5 (u))

P k
0 (u) =

∂If (u)

∂u1
fx/p

k
f z(u)

P k
1 (u) =

∂If (u)

∂u2
fy/p

k
f z(u)

P k
2 = −(P0p

k
fx(u) + v1pkf y(u))/p

k
f z(u)

P k
3 = −pkf z(u) · P1 + pkf y(u)P2

P k
4 (u) = pkf z(u)P0 − pkfx(u)P2

P k
5 (u) = −pkf y(u)P0 + pkfx(u)P1

(5)

where pkf (u) = (pkfx(u), p
k
f y(u), p

k
f z(u)) is the point

∫
R3

corresponding to a particular pixel u and its inverse depth
id(u) as seen in the frame f as defined in (2).

Finally, we compute

gk =
∑
u∈s

Jk(u) · e(u)

Hk =
∑
u∈s

Jk(u) · J(u)kT
(6)

where gk is the gradient vector ∈ R6 and Hk ∈ R6x6 is
the Hessian matrix, both for iteration k. The update δP k

f is
computed solving a system of linear equations

HkδP k
f = gk (7)

and finally the estimate for iteration k+1, P k+1
f is computed

as
P k+1
f = P k

f + δPf (8)

this is done iteratively until some convergence condition is
reached. In our case, we check

• if the norm of δPf is lower that 1e− 16
• if the C(P k+1

f)/C(P k
f), as defined in 1, is lower than

0.999
The algorithm starts with an initial guess of P 0

f = Pkf .
To improve its robustness, a level of detail (LoD) approach is
used [6]. Both Ikf and If are down-sampled in several levels
(1/2 resolution, 1/4 resolution and so forth) and K and K−1

are scaled accordingly. The system starts with the lower level
of detail, and the resulting Pf is feed back as initial guess
to higher levels of image resolution, until the level of detail
corresponding to the original image resolution is reached.

III. SYSTEM ARCHITECTURE

The computationally demanding portion of the algorithm
is concentrated in the computation of (6), which must be
done several times, both for each level of detail and for each
iteration within each level.

The literature suggests the use of 5 levels of detail [6], with
iterations ranging from 5 for the finest level and 100 for the
coarsest one. This means that (6) will have to be computed
hundreds of times for each new frame f .

On the other hand, computing (7) involves solving a system
of equations, which can be done quite fast using a CPU and
some specialized linear algebra libraries such as Eigen [8].

Other sections of the algorithm, such as the acquisition of
the images, the check of the convergence condition, data move-
ment from the image acquisition system and the FPGA can
be also efficiently commanded by the CPU, using specialized
libraries like OpenCV [9] and the DMA already present in the
CPU.

As a consequence, the computation will be done in a hybrid
fashion using the CPU and the FPGA. This way, the system
leverages the strength of the CPU in the sequential portions of
the algorithm, and the FPGA in the highly parallel numerical
computations required to solve (6).

julio
XI Southern Conference on Programmable Logic SPL2023 64

A step by step description of the algorithm is as follows:
1) The CPU sequentially acquires the input frames, being

from a camera or a file system.
2) The data pre-processing stages, such as the down-

sampling of the images and the movement of data
between CPU and FPGA will also be done through the
CPU.

3) For each LoD:
4) For each iteration:
5) The CPU instructs the FPGA to compute H and g

according to (6), and waits until this computation is
done.

6) The CPU solves (7) and updates Pf according to (8),
checking if the convergence condition was met.

A CPU implementation for (6) was developed, to function
as gold standard to compare both results with the FPGA as
well as to compare computing time.

A. CPU implementation

The CPU implementation of (6) was done in a straight-
forward fashion. All the optimization steps are accomplished
using specialised external libraries.

The function iterates through all the pixels u of the reference
frame kf , computes J(u) and accumulates g and H . The
linear algebra computations, such as vector addition, matrix
multiplication and SE(3) operations were implemented using
the Eigen library [8], which is highly optimized both for CPUs
with ARM based architectures or x86 based CPU architectures.

Floating point arithmetic was used through the whole im-
plementation. It is important to note that data movement is
not required beyond the acquisition stage, where the image
information is moved from the acquisition hardware to the
CPUs RAM. We used just one CPU to iterate through all
pixels u. This way, we can estimate a computing time gain
of at most n, being n the number of CPUs that the particular
system architecture has.

B. FPGA implementation

The FPGA used to developed this system was the
Zynq Ultrascale+ MPsoC. The FPGA implementation
of (6) was done using the vitis hls compiler provided by Xilinx,
which allows to describe the FPGA configuration through the
use of C and C++ languages. It is important to notice that
direct use of the CPU C/C++ code is not possible. This is in
part because of the use of dynamic memory is not possible in
a FPGA setting, part because most of the libraries used in the
CPU implementation, such as [8], is not synthetisable, and
part because of the intrinsic differences between CPUs and
FPGAs requires to develop especially tailored code to have
good performance on either system.

1) System inputs and outputs: To compute (6), the FPGA
requires Ikf , which is an 8bit h · w matrix, If which is also
a 8bit h ·w matrix, and idkf , which is a floating point image
containing the inverse depths for each pixel in kf , so it is a 32
bit h·w matrix. Also, the current estimated pose P k

f is needed,
and the intrinsic camera matrix K and K−1. All these data

must be passed from the CPU RAM to the FPGA. The size
of h and w will change depending of the LoD being use at
the moment.

As result, the FPGA will compute g and H , and this data
must be given back to the CPU.

2) Naive implementation: As first step toward an FPGA
implementation, we took the CPU code and made the essential
modifications to develop a synthetisable code.

To support linear algebra operations such as the SE(3)
operations in the FPGA, we programmed from the ground
up our own library specially tailored for FPGA syntheses.
The SE(3) Lie group was represented internally as a rotation
matrix ∈ R3x3 and a translation vector ∈ R3. Vectors and
matrices ∈ R2, ∈ R3 and ∈ R3x3 are all defined as well as its
interoperability with the SE(3) group. Also we programmed
operations ∈ R6 and ∈ R6x6 to be used for g and H .

The system computes g and H mainly through the following
steps:

1) Define H and g, initialize with 0
2) Iterate through the y image dimension, from 0 to h
3) Iterate through the x image dimension, from 0 to w
4) Compute Hu and gu for the pixel (x,y)
5) Accumulate Hu and gu in H and g
The system input-output was accomplished through direct

RAM access. This way, in stage 4, the FPGA read from RAM
Ikf (u), id(u) and If (up).

To measure the implementation performance, the Vitis com-
piler needs to know at compile time the number of iterations
for each loop. As h and w are variables, that depend on the
specific LoD that is being computed at the time, we use the
pre-procesor directive #pragma HLS loop_tripcount
to tell the compiler the values that h and w can take. We
set min = 480 and max = 480 for the y iteration and
min = 640 and max = 640 for the x iteration. This way,
the performance will be measured for a image of 640x480,
which is the native resolution of our test dataset. This also
means that all performance metrics will be measured for the
first LoD.

This implementation has a latency of 12288464 clock cy-
cles, that for the 150MHz clock that the used FPGA has,
translate to a latency time of 81.27 ms. The Vitis compiler
automatically flattened and pipelined the y-x loop, which
completes its computation in 12288262 cycles. Besides some
cycles used in initialization stages, the y-x loop takes the
majority of the computation. The pipeline initialization interval
is of 40 cycles, which means that there is data-dependencies
in the y-x loop that does not allow the pipeline to run one
computation per clock.

C. Optimizations

The first optimization was aimed at reducing the data
dependencies in the y-x loop. The reports given by the Vitis
compiler shows that the accumulation in step 5 is the limiting
factor in improving the pipeline initialization time. Indeed, if
the accumulation of H or g is not finished, the next pipeline
stage cannot begin. As H is a R6x6 matrix, its accumulation

julio
XI Southern Conference on Programmable Logic SPL2023 65

involves 36 loads, 36 adds and 36 stores. On the other hand,
g is a R6 vector and so it involves 6 loads, 6 adds and 6
stores. These adds can be done all in parallel, but the Vitis
tool indicates that the H data structure was implemented using
BRAM. This limits the parallel loads and stores possible to
just 2.

A first solution was to use the pre compiler instruction
#pragma HLS array_partition complete. This
tells the Vitis compiler to synthetise the whole array of data
as internal logic, instead of using BRAM, which would allow
to have more loads and stores per cycle. This first solution
did not give good results, because H and g are represented
using floating points. The floating point add function requires
12 clock cycles, so the data dependency remains because even
when the load and store can be done in 1 clock cycle, the add
operation cannot be completed. To solve this issue, instead of
having just one H and g accumulator, we implemented the
system with an array of 16 accumulation H[16] and g[16].
In each clock cycle the array index is changed. This solves
the data dependency and allows the pipeline to run at 1 cycle
initialization interval. After we finish computing the y-x loop,
we run an additional step of adding the 16 H and g together.

This implementation has a clock latency of 1537026 cycles,
which translates to a time latency of 10.247 ms. The y-x mloop
was again flatten and pipelined by the Vitis compiler, taking
1536262 clock cycles to compute, again mainly all of the
clock cycles are used to compute the y-x loop. The pipeline
initialization interval is of 5 cycles.

This time, the data dependency in the pipeline of the y-x
loop is in the reading the If . Computing H and g as described
by 5 requires to access to the up value of If , as well as to
access the derivatives ∂If

∂up
. These derivatives are approximated

by computing ∂If
∂u1

= (If (u1 +1, u2)− If (u1 − 1, u2))/2 and
∂If
∂u1

= (If (u1, u2+1)−If (u1, u2−1))/2. This requires to ac-
cess 5 different values of If , namely If (u1, u2), If (u1+1, u2),
If (u1 − 1, u2), If (u1, u2 + 1), If (u1, u2 − 1). These values
are hard to be read from RAM using a burst-read operation,
because up = (u1, u2) is not known beforehand, it is computed
using 2.

To solve this, before the y-x loop we read the whole If
to BRAM. This operation can be done in a RAM burst-read
operation, and having the whole If allows to read in an almost
random access manner the pixels locations up computed by 5.

In addition, constantly reading from RAM the values from
Ikf and idkf is not optimal. It would be better to read in a
burst-operation several values for both of these data structures
from RAM and store them in BRAM, and compute the rest
of the pipeline using these cached values. We implemented 2
internal BRAM memories, to store the y and y+1 line of both
Ikf and idkf . Before the stage 2 we read the 0th line, and in
stage 4 we compute the H and g values for the yth line and
the xth column using the BRAM memory for the yth line, and
simultaneously read the y+1 line from RAM to BRAM.

The resulting implementation is described using the follow-
ing stages

1) Define a BRAM to store two lines of Ikf and idkf , and
the whole If image

2) Define H[16] and g[16] data structures, initialized to 0
3) Read from RAM the 0th row of size w of Ikf and idkf ,

and store it in BRAM
4) Read the whole If and store it in BRAM
5) Iterate through the y image dimension, from 0 to h
6) Iterate through the x image dimension, from 0 to w
7) Compute Hn and gn for the pixel (x,y) using yth row of

BRAM-stored Ikf and idkf
8) Store in BRAM the x value of the (y+1)th row of Ikf

and idkf
9) Save Hn and gn in H(x%16) and g(x%16)

10) Add together the 16 values of H and g.
This implementation has a clock latency of 959655, and a

time latency of 6.398 ms. The reading of If to BRAM takes
343681 cycles, that for a 640x480 image is almost 1 clock
per pixel. The y-x loop takes 614532 cycles, with an pipeline
initialization interval of 2 cycles. This 2 cycles result from
the 5 reads that must be performed for the If . We use the
#pragma HLS array_partition cycle pre compiler
directive for If BRAM data structure, to store the different y
lines of If in different BRAMS, but still we could not avoid
the need to read 3 simulaneous pixel values, that can be done
at a minimum in 2 clock cycles.

From these results, we can compute 1 iteration in the first
LoD (640x480) in 6ms, the second LoD level (320x240) can
be computed in 3ms, the third one in 0.75ms, the forth in
0.18ms and the fifth in 0.04 ms. If we take the maximum
iterations allowed for each levels used in [6], namely 0, 10,
20, 50, 100, the system will estimate a pose in 58ms, achieving
15 fps.

The FPGA resource usage is summarized in the table III-C.

BRAM DSP FF LUT
Used 395 169 49857 41562

Available 624 1728 460800 230400
Percentage 63 9 10 18

As can be seen, the usage of the FPGA is well withing the
maximum resources available. The resource most utilized is
clearly the BRAM, which is natural from the highly memory
bound nature of the algorithm.

IV. RESULTS

In this section, we present the results of our experiments
testing the performance of the FPGA-based dense monocular
pose estimation system we developed. We used a synthetic
dataset for testing, where we had access to the true pose for
each frame. The dataset contained an office scene, including
desks, PCs, chairs, and bookshelves. An example image from
the dataset is shown in Figure 1.

To evaluate the performance of the system, we computed
the id using the SLAM system DTAM [10] for some of the
images in the dataset. These images were used as reference
frames during the execution of the system. We saved both the
frames in the dataset and the inverse depths of the reference

julio
XI Southern Conference on Programmable Logic SPL2023 66

Fig. 1: Example image of the dataset used to test the system.

frames in the SD card, which contained the Linux filesystem
for the FPGA, as well as the FPGA kernel code and the CPU
program.

We compared the performance of our FPGA-based system
with that of a single-core CPU implementation. The mean
time taken by the CPU pose estimation to process each frame
was 103.4 ms, while the FPGA implementation took a mean
of 75 ms to compute. The additional time taken by the
FPGA implementation can be accounted for by the extra time
taken by the CPU to accomplish the RAM-FPGA memory
communication.

Our experiments showed that the FPGA-based system we
developed was able to outperform the single-core CPU imple-
mentation, achieving 13 fps. While these results are promising,
there is still room for further optimization. In particular, we
believe that wider RAM to FPGA memory accesses and
a better BRAM access pattern could further improve the
system’s performance.

V. CONCLUSIONS

In this work, we developed a FPGA-based dense monocular
pose estimation system that outperformed a single-core CPU
implementation. Our system achieved a frame rate of 13 fps
and showed promising results in the synthetic dataset we used
for testing.

Our results demonstrate the potential of using FPGA-based
systems for dense monocular pose estimation, which has im-
portant applications in robotics, augmented reality, and virtual
reality. In particular, FPGA-based systems could enable real-
time performance in these applications, which is critical for
user experience and safety.

While our system achieved good performance, there is
still room for improvement. In particular, future work could
focus on optimizing the system’s memory access patterns and
exploring alternative algorithms for dense monocular pose
estimation. We believe that these improvements could further
enhance the performance of the system and make it even more
useful for real-world applications.

CONFLICT OF INTERESTS

Authors declare no conflict of interests.

REFERENCES

[1] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment - a modern synthesis,” in Proceedings of the
International Workshop on Vision Algorithms: Theory and Practice, ser.
ICCV ’99. London, UK, UK: Springer-Verlag, 2000, pp. 298–372.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646271.685629

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, nov 2004. [Online].
Available: http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[4] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” Computer Vision and Image Understanding (CVIU), vol. 110,
no. 3, pp. 346–359, 2008.

[5] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “Loftr: Detector-
free local feature matching with transformers,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021,
pp. 8922–8931.

[6] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale di-
rect monocular SLAM,” in European Conference on Computer Vision
(ECCV), September 2014.

[7] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Mar. 2018.

[8] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[9] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[10] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in 2011 International Conference
on Computer Vision, Nov 2011, pp. 2320–2327.

http://dl.acm.org/citation.cfm?id=646271.685629
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://github.com/itseez/opencv
https://github.com/itseez/opencv
julio
XI Southern Conference on Programmable Logic SPL2023 67

XI Southern Conference on Programmable Logic
SPL2023

Table of Contents
Design Forum

FPGA-Accelerated Convolutional Neural Network……………………………...............……..........1
Mohammed Chelkha, Carlos Alberto Valderrama Sakuyama and Ali Ahaitouf

Prototipo para estudio del timing de un convertidor analógico-digital de aproximaciones
sucesivas……………………………………………………………………………………………...5

Daniel Alberto Crepaldo, Carlos Varela, Lisandro Martin, Federico Pacher, Eduardo Bailón
and Javier Ghorghor

SHA-3 Implementation for Post-Quantum Cryptography using High-Level Synthesis9
Fernando Aparicio Urbano-Molano and Jaime Velasco-Medina.

A deep learning application for edge-computing device………………...13
Roberto Millon, Federico Favaro and Pablo Ezzatti

Sphery vs. Shapes: A hardware-only raytraced game……………………………............................17
Victor Suarez Rovere and Julian Kemmerer

Remote Lab: an implementation guide and case study with free hardware boards...........................21
Astri Edith Andrada Tivani, Juan Ignacio Vergés, Julio Daniel Dondo Gazzano and Andrea

Schwandt

https://github.com/JulianKemmerer
https://github.com/suarezvictor
https://www.fing.edu.uy/
https://www.fing.edu.uy/
https://www.undec.edu.ar/
http://www.fceia.unr.edu.ar/
https://www.researchgate.net/profile/Ahaitouf-Ali
https://www.researchgate.net/profile/C-Valderrama-Sakuyama

FPGA-Accelerated Convolutional Neural Network
1st Mohammed CHELKHA

SEMi, SIGER
FMPs, USMBA

Brussels, Belgium
mohammed.chelkha@umons.student.ac.be

2nd Carlos VALDERRAMA
ELECTRONICS AND MICROELECTRONIcS UNIT

POLYTECHNIC FACULTY OF MONS
Mons, Belgium

carlos.valderrama@umons.ac.be

3rd Ali AHAITOUF
SIGER
USMBA

Fez, Morocco
ali.ahaitouf@usmba.ac.ma

Abstract—In recent years, FPGA has become an attractive
solution to accelerate CNN classification for its flexibility, short
time-to-market, and energy efficiency. The real-time evaluation
of a CNN for image classification on a live video stream can
require billions or trillions of operations per second. To come
with a competitive re-configurable implementation satisfying both
development time and flexibility, we propose using as a base a
re-configurable Architecture composed by a set of image and
video processing blocks. The whole architecture can be configured
on-the-fly based on the image characteristics thus supporting
variable image resolutions for each layer of the CNN.

Index Terms—Convolutional Neural Network, FPGA, Deep
learning, Coarse-Grain

I. INTRODUCTION

Convolutional Neural Networks have been some of the most
influential innovations in the field of computer vision. [1] 2012
was the first year that neural nets grew to prominence as Alex
Krizhevsky used them to win that year’s ImageNet competi-
tion (the annual Olympics of computer vision), dropping the
classification error record from 26 to 15 percent, an astounding
improvement at the time.

CNNs extraordinary performance comes at a high cost in
terms of computing complexity. Even more effort is required
for picture segmentation and scene tagging. While the latest
graphics processing units (GPUs) can achieve this level of
speed, there is also a need to integrate such solutions into
other systems, such as vehicles, drones, or even wearable
gadgets, which have stringent physical size and energy con-
sumption constraints. As a result, future embedded CNNs will
require compact, efficient, yet extremely powerful processing
platforms. [2] This study aims to explore the possibilities
of utilizing an existing novel flexible architecture for real
time image and video processing, that takes advantage of
the inherent parallelism of Filed programmable Gate Arrays
(FPGAs) to achieve real-time performance. We can resume
our proposal in two main contributions:

• A convolutional neural network architecture that has been
designed to fit perfectly on the FPGA. The CNN is very
consistent, and it achieves a satisfactory classification
accuracy with low processing cost.

• A hardware/software co-design to efficiently accelerate
the entire CNN on FPGAs. We propose a uniformed con-
volutional matrix-multiplication representation for both
computation-intensive convolutional layers and pooling
layers.

II. RELATED WORK

GPUs were initially developed to accelerate graphics pro-
cessing. A GPU is particularly designed for integrated trans-
form, lighting, triangle setup/clipping, and rendering. A mod-
ern GPU is not only a powerful graphics engine but also
a highly parallelized computing processor featuring high
throughput and high memory bandwidth for massive parallel
algorithms [3], which is dubbed as GPU computing or general-
purpose computing on GPU (GPGPU). For our interest, CNNs
can take advantages of the nature of algorithmic parallelism in
the following aspects [4] : (i) the convolution operation of an n
x n matrix using a k x k kernel can be in parallel; (ii) the sub-
sampling/pooling operation can be parallelized by executing
different pooling operations separately; (iii) the activation of
each neuron in a fully connected layer can be parallelized by
creating a binary-tree multiplier. With great parallel processing
structures and strong floating-point capabilities, GPGPUs have
been recognized to be a good fit to accelerate deep learning.
A number of GPU-based CNN libraries have been developed
to facilitate highly optimized CNN implementation on GPUs,
including cuDNN [5], Cuda-convnet [6] and several other
libraries built upon the popular deep learning frameworks, such
as Caffe [7], Torch, Tensorflow [8], Keras, etc.

III. BACKGROUND

As a typical supervised learning algorithm, there are two
major phases in CNN: training phase and inference (aka feed-
forward) phase. Since many industry applications would train
CNN in the background and only perform inferences in a real-
time scenario, we mainly focus on the inference phase in this
thesis. The aim of the CNN inference phase is to get a correct
inference of classification for input images. It is composed of
multiple layers, where each image is fed to the first layer. Each
layer receives a number of feature maps from a previous layer,
and outputs a new set of feature maps after filtering by certain
kernels. The convolutional layer, activation layer, and pooling
layer are for feature map extraction, and the fully connected
layers are for classification. When these layers are stacked, we
have formed a full CNN architecture. However, knowing the
overview of how CNNs operate isnt going to be sufficient to
implement a CNN with real world data. Its imperative to not
only understand the individual layers, but the fine points of
the parameters and how they communicate with other layers
too.

julio
XI Southern Conference on Programmable Logic SPL2023 1

IV. ENHANCED P2IP ARCHITECTURE FOR REAL-WORLD
APPLICATION

The P2IP is a systolic CGRA designed for real-time image
and video processing targeting embedded systems. The objec-
tive of this architecture is to overcome the limitations of the
existent solutions for image and video processing, combining
high-performance, low-latency, and low-power consumption,
with a level of flexibility. Images or frames are entered as a
stream of pixels in a sequential line-scanned format progress-
ing through the pipeline at a constant rate. The P2IP datapath
works at the pixel clock frequency,delivering one processed
pixel per clock cycle after a initial latency to fill the pipeline.It
was projected to work between a frame source and a frame
sink directly on the pixelstream. In order to allow the P2IP
integration into an image processing chain, the AXI4-Stream
[12] was adopted as the external interconnection protocol.
The AXI4-Stream protocol is managed by the P2IP Controller
which is also in charge of reading the configuration words on
the configuration input port (config in) and transferring them
to the processing core. The P2IP controller is the input of the
P2IP configuration mechanism followed by a Configuration
Decoder Tree (CDT), distributed throughout the processing
core.

V. HARDWARE IMPLEMENTATION OF P2IP-CNN ON
FPGA

A. Developping the Baseline Model

The design of the test harness is modular, and we can
develop a separate function for each piece. This allows a given
aspect of the test harness to be modified or inter-changed, if
we desire, separately from the rest.

We can develop this test harness with three key elements.
They are the preparation of the dataset, the definition of the
model and the extraction of the weights and the feature maps
of each layer.

B. Accelerator Design Exploration

Our CNN accelerator design on FPGA is composed of sev-
eral major components, which are processing elements (PEs),
on-chip buffer, external memory, and on-/off-chip intercon-
nect. A PE is the basic computation unit for convolution and
pooling. All data for processing are stored in external memory.
Due to on-chip resource limitation, data are first cached in on-
chip buffers before being fed to PEs. Double buffers are used
to cover computation time with data transfer time. The on-chip
interconnect is dedicated for data communication between PEs
and on-chip buffer banks.

There are several design challenges that obstacle an efficient
CNN accelerator design on an FPGA platform. First, loop
tiling is mandatory to fit a small portion of data on-chip.
An improper tiling may degrade the efficiency of data reuse
and parallelism of data processing. Second, the organization
of PEs and buffer banks and interconnects between them
should be carefully considered in order to process on-chip
data efficiently. Third, the data processing throughput of PEs
should match the off-chip bandwidth provided by the FPGA

platform. The two-level unrolled loops are implemented as
concurrently executing computation engines and a tree-shaped
poly structure is used. For the best cross-layer design case,
the computation engine is implemented as a tree-shaped poly
structure with 9 inputs from input feature maps and 9 inputs
from weights and one input from bias, which is stored in the
buffers of output feature maps. This architecture consists of
two parts: a data access system and a PE array. The data
access system includes two parts, namely, a DDR3 controller
and a Cache IP. The DDR3 controller is used to exchange
data between the DDR3 memory and the Cache IP. The
Cache IP can provide a feature map, kernel, and weight
to the function module. The PE array is the computation
core of the accelerator and consists of function modules and
reorganization buffers. Each PE is a pipeline architecture, the
execution time between two adjacent PEs is the super-pipeline
cycle. The controller is not a part of the accelerator and is used
to interact with the CPU and accelerator.

C. Design of the HW-SW platform

The rapid evolution of system-on-a-chip technologies has
created the need for hardware-software co-design since these
two constituent elements (HW-SW) of modern embedded
systems can no longer be treated separately. This forms an
important gap in existing methodologies, since the designer
would like to be able to evaluate a number of alternative
architectures, before committing to a specific one.The design
of an embedded system using a co-design approach, involves
a series of actions that must be followed [13] In hardware-
software co-design approaches, the whole development cycle
should be based around a single model.This model evolves
during the various design stages from the initial informal
conceptualization of the user’s requirements to the final
implementation-level detailed description of the system. The
next step is to refine the formal system specification so that all
details - including implementation decisions - are contained
in the system model. Finally, the emerged system model is
translated to implementation languages like C, C++, Java
etc. for software and VHDL, Verilog, Hardware C etc. for
custom hardware. Our system does this by using a hybrid
of layer and model parallelism together with a number of
new workload/weight balancing strategies. a single on-the-fly
reconfiguration is needed: each configuration computes certain
layers, or a part of a single layer; each device is optimized
independently with respect to its own computation.

We find this approach to be effective with performance sim-
ilar to that of GPU clusters of similar size and technology,but
with far better power efficiency. The limiting factor is inter-
FPGA bandwidth. The framework for mapping CNN logic to
distributed FPGA clusters that achieves both high efficiency
and scalability; that does not suffer from issues related to
mini-batch size; and that needs only a simple interconnection
network as is available in any multi-FPGA system with con-
sistent communication and reasonable bandwidth. To ensure
the connection, we will use the PIO (Parallel I/O) component
from Platform Designer. When adding the component, we get

julio
XI Southern Conference on Programmable Logic SPL2023 2

to choose the direction and the width of the register, also the
base address of PIO component which is very important. The
ARM program will access the component according to this
base address. The ARM program development will make use
of this address and a given Linux shell batch file will help
extract the address information to a header file hps 0.h.

Finally, we need to integrate the SoC design with our
P2IP using Verilog code to instantiate the core; The Verilog
code generated and modified still has to be compiled into
a bit-stream for the FPGA. With the schedule and resource
allocation already fixed and all timing constraints properly
set, there is not much left to be configured in Quartus itself.
However, the timing results reported by the Quartus can be
quite different from the estimates reported by the simulation
in ModelSim.

D. ARM program development

With all these steps done, the FPGA side of the CNN
accelerator is complete. However, there is still a missing key
component: The CPU-side software which will run the rest of
the CNN layers and configure the P2IP at each step . This
subsection introduces how to design an ARM C program to
control the CNN FPGA-Accelerator. Altera SoC EDS is used
to compile the C project. For ARM program to control the
P2IP component, the registers addresses are required. The
Linux built-in driver ‘/dev/mem’ and mmap system call are
used to map the physical base address of P2IP component
to a virtual address which can be directly accessed by Linux
application software.

VI. RESULTS

A. P2IP CNN FPGA Accelerator Performance

The P2IP CNN FPGA Accelerator is meant to be a proof-
of-concept for the implementation of CNNs on the basis of a
systolic CGRA for image and video processing on FPGA. The
secondary goal targets a maximum throughput on the given
small and low-power platform, and in consequence a good
power efficiency. This section evaluates the finished design
with regard to the factors resource utilization, accuracy and the
throughput of the accelerator. Finally, a number of potential
architectural optimizations are highlighted.

The P2IP Embedded CNN has been completely assembled
and successfully taken into operation on a DE1 SoC Board.
The full test system consists of :

• HPS (ARM Cortex9 with 1 GB DDR3 memory), running
under Linux4.

• MNIST CNN network description and trained weights,
copied to the memory

• P2IP CNN FPGA Accelerator bitstream, loaded into the
FPGA fabric

• P2IP CPU-side application, feeding the input images,
launching the FPGA accelerator, measuring the timing
and checking the classification results.

Using the above system configuration, the P2IP Embedded
CNN has been evaluated in a realistic embedded scenario.

B. Throughput and Latency

The embedded CNN’s throughput is measured in terms of
images per second. In a typical scenario, the CNN accelerator
is configured with the network description and the trained
weights beforehand, and is then utilized to classify an in-
coming stream of images. Therefore,the run-time per frame
is measured from the moment when the FPGA accelerator is
started,to the moment when the calculation of the Softmax
Classification layer is finished. In the P2IP, each PE can have
a different latency according to its configuration.

The NE latency (NEL) for a neighborhood window with m
× n pixels in an image with dimensions M × N pixels, can be
expressed as defined here :

NEL = N(
m− 1

2
) +

n+ 1

2
+ b

where N is the number of pixels in a image line, m is the
number of lines in a neighborhood window, n is the number
of pixels per neighborhood line, and b is the border handler
latency. The Convolver Module latency for a 3x3 filter is
calculated as 9 pixel clock cycles and the Reconfigurable
Interconnection latency as 6 pixel clock cycles.

C. Accuracy and Error

the Keras Python CNN model scored a 94% accuracy in
the test. To put the P2IP CNN model to test and confirm these
numbers, we extracted the feature maps of each layer and did a
similarity comparison with the Keras model. This was achived
using the SSIM algorithm.

The SSIM was first introduced in the 2004 IEEE paper
[14] , it was introduced as an alternative complementary
framework for quality assessment based on the degradation of
structural information. The Structural Similarity Index (SSIM)
metric extracts 3 key features from an image: Luminance,
Contrast, Structure. The comparison between the two images
is performed on the basis of these 3 features. This was all
implemented in Python and the scores were ranging from 0.81
to 0.68 in terms of similarity.

D. Resources Analysis

Regarding the amount of logic required by the P2IP ar-
chitecture, the Table I presents the resources required by the
proposed implementations. Note that since all devices from the
“V” series share the same internal architecture,the resources
utilization is similar for both boards.

VII. DISCUSSIONS
A. Comparison with State-of-the-Art Architectures

we confine ourselves to a summary of the most important
characteristics in this section. To start with, table II repeats
the comparison of the different CNN topologies, and this
time includes the P2IP CNN and its key parameters. All
the parameters from our CNN, were calculated based on the
Pyhton-Keras model.

The comparison presented in this section is concentrated
on programmable architectures that target embedded systems,
performing image classification.

julio
XI Southern Conference on Programmable Logic SPL2023 3

Components Adaptive Logic Module Memory (kbits) DSP
Control and Interface
Controller 151 0 0
Input Register 15 up to 256 MB 0
Output Register 12 up tp 256 MB 0
Total 178 - 0
PE
PE-CD 38 0 0
Spatial processor 1221 2.3 14
Memory Controller 1838 131.1 0
Reconfigurable Interconnection 211 0 0

TABLE I
P2IP CNN RESOURCES REQUIREMENTS ON FPGA DEVICES FROM THE

ALTERA CYCLONE“V” SERIES

Conv Layers MACCs (millions) params (millions) Error
P2IP CNN Up to 20 530 1.1 19%
AlexNet 5 1140 62.4 19.7%
VGG-16 16 15470 138.3 8.1%
GoogleLeNet 22 1600 7.0 9.2%
ResNet-50 50 3870 25.6 7.0%
SqueezeNet 18 860 1.2 19.7%

TABLE II
COMPARISON OF P2IP CNN TO CNN ARCHITECTURES FROM PRIOR

WORK.

the P2IP CNN has an evident advantage over the CPU
implementation. The P2IP speedup factor for the CPU im-
plementation varies from 24 to 29. Regarding the GPU im-
plementation, the P2IP CNN presents an advantage on almost
all resolutions. The GPU tends to have an increasingly better
performance in function of the image resolution, while the
P2IP has a constant performance.

In addition to its competitive performance, the P2IP can
still offer portability and much lower power consumption when
compared to GPUs and CPUs. The P2IP solution consumes 50
times less power than the CPU implementation and 90 times
less power than the GPU implementation.

B. Potential Improvements

An architectural bottleneck can be seen in the prefetching
of image pixels from the image cache. Although this task is
executed in parallel to the actual output channel calculation to
hide the prefetch latency, the current delay is relatively long.
The architecture of the image cache might need to be improved
to allow for more parallel read accesses, or a register-field
might be used to cache the active image patch. This should be
viable as the image cache occupies less than 8 % of the Block
ROMs, and a total of 300 k flip-flops are still unused. An ideal
image cache would have a latency of less than 5 clock cycles,
which would result in a speedup factor of 1.4.

Also, 5×5 convolutions are currently not implemented ef-
ficiently: two 3×3 MACC units are used for the necessary
multiplications. The potential overall speedup from utilizing
all 18 multipliers in the MACC units for individual 5×5
convolutions is approximately 1.2 with the current prefetch
latency of 9 clock cycles. With an ideal Image Cache, a
speedup factor of nearly 1.5 could be achieved.

VIII. CONCLUSION

In this article, we demonstrated the design and imple-
mentation of a proof-of-concept FPGA-accelerated embedded

Convolutional Neural Network. The P2IP CNN is designed
for image classification and consists of two main components:
a highly optimized and customized CNN FPGA topology,
and the P2IP CNN HW-SW platform, a FPGA-based ar-
chitecture for configuring and running the FPGA accelera-
tor. The P2IP Embedded CNN has been assembled into a
fully working proof-of-concept system on both the DE-1 and
the SoCkit board, All Programmable platforms. This project
clearly demonstrates the feasibility of FPGA-based embedded
CNN implementations. The current solution already exhibits
a reasonable performance, and a number of opportunities for
further gains in throughput and power efficiency have been
pointed out.

The tough requirements of embedded CNNs regarding the
size, efficiency and computational power of the underlying
computing platform are very hard to meet with the systems
available today. Even though the presented P2IP CNN does
not yet provide the massive amounts of computational power
required for future applications of embedded image under-
standing, it may still serve as a steppingstone and a guide for
further explorations of the FPGA as a platform for embedded
CNNs. The biggest advantage of these FPGA-based systems
can be seen in their scalability. Using a larger device, much
higher performance can be attained at comparable efficiency
figures,while most other platforms are inherently limited by
the amount of computational power available on a given
chip. FPGAs therefore provide a promising path towards the
vision of powerful embedded CNNs and the abundance of
fascinating applications which could profit from on-board
image understanding

REFERENCES

[1] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, vol. 5, no.
4, pp. 115–133,, 1943.

[2] A. Karpathy. Surpassing human-level performance on imagenet classi-
fication, 2014.

[3] WikiPedia. Graphics processing unit, 2013.
[4] Magnus Halvorsen. Hardware acceleration of convolutional neural net-

works. MS thesis, Norwegian University of Science Technology, 2015.
[5] haran Chetlur. Cudnn: Efficient primitives for deep learning. arXiv:

1410.0759, 2014.
[6] Alex Krizhevsky. Cudaconvet2, 2013.
[7] Yangqing Jia. Caffe: convolutional architecture for fast feature embed-

ding. International Conference on Multimedia, 2014.
[8] Tensorflow, https://www.tensorflow.org/ 2014.
[9] cs231n. Convolutional neural networks for visual recognition, 2016.

[10] D. Gschwend; C. Mayer; S. Willi. Design and implementation of a
convolutional neural network accelerator asic. Semester Thesis, ETH
Zürich, 2015.

[11] Keiron O’Shea; Ryan Nash. An introduction to convolutional neural
networks, 2015.

[12] ARM , AXI4 , https://www.arm.com, 2010
[13] F. Vahid D. Gajski. Specification and design of em-bedded hardware-

software systems. IEEE Designand Test of Computers, vol.12. pp.53-67,
1995.

[14] Zhou Wang . Alan Conrad Bovik . Hamid Rahim Sheikh. Image
quality assessment: From error visibility to structural similarity. IEEE
TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, 2004.

julio
XI Southern Conference on Programmable Logic SPL2023 4

Prototipo para estudio del timing de un convertidor
analógico-digital de aproximaciones sucesivas

Daniel Crepaldo, Carlos Varela, Lisandro Martín,
Federico Pacher, Eduardo Bailón, Javier Ghorghor.

Laboratorio de Microelectrónica - FCEIA - Universidad Nacional de Rosario
Rosario, Argentina

microlab@fceia.unr.edu.ar

Abstract— Se presenta un prototipo desarrollado en
tecnología mixta para el estudio y optimización funcional y de
temporización de un convertidor analógico-digital de
aproximaciones sucesivas por reparto de carga como paso previo
a su diseño e implementación como parte de un ASIC en
tecnología CMOS. El circuito de control del convertidor se
implementó utilizando una placa de desarrollo que incluye una
FPGA Spartan 3E, mientras que el bloque analógico se realizó
con elementos discretos montados en una plaqueta para evaluar
en campo el impacto de los distintos parámetros de
funcionamiento (valor de los capacitores y resistencia de las
llaves, frecuencia, retardos, solapamiento de llaves, consumo,
etc.) en el funcionamiento general del CAD. El prototipo
permitirá verificar la influencia de los valores de los capacitores,
la impedancia de las llaves analógicas y los tiempos de respuesta
del resto de los componentes del circuito en la redistribución de la
carga del convertidor y sus prestaciones finales.

Keywords— Convertidor A/D, timing, mínimo consumo, tasa
conversión, tecnología CMOS.

I. INTRODUCCIÓN

Los sensores incluidos en los nodos de una red inalámbrica
inteligente reconfigurable encargada de monitorear y recolectar
datos de variables climáticas (temperatura, humedad, presión,
etc.) en campo [1] entregan a la salida un valor de tensión
proporcional a la magnitud medida, el cual debe ser
muestreado, cuantificado y codificado para efectuar el
almacenamiento y posterior transmisión de datos a través de la
red. Esta función la cumple el convertidor analógico-digital,
que es el encargado de realizar la conversión de la tensión de
salida de esos sensores.

La elección de la topología de conversión a utilizar se
definió a partir de un estudio comparativo entre las posibles
opciones aplicando como criterios de selección las restricciones
que impone la aplicación [2]:

 Mínimo consumo. A fin de maximizar la duración de las
baterías, la reducción del consumo es una de las principales
restricciones del diseño.

 Baja tasa de conversión. La baja variabilidad en el tiempo
de las magnitudes a medir permite trabajar con una tasa de
conversión por unidad de tiempo reducida.

 Resolución de conversión. Tomando como ejemplo típico la
medición de temperatura, la precisión necesaria (0,1 ºC en
el rango de temperatura ambiente) requiere un conversor
con una resolución mínima de 10 bits.

En base a estas restricciones se optó por realizar la
conversión mediante un convertidor analógico-digital de
aproximaciones sucesivas por reparto de carga. Esta opción
puede trabajar sin problemas con la resolución planteada y a la
tasa de conversión requerida por la aplicación, mientras que a
partir de un estudio preliminar se determinó que su consumo
energético es el mínimo posible dentro de las opciones
disponibles. [3]

Convertidor de aproximaciones sucesivas (SAR)

El convertidor de aproximaciones sucesivas, cuyo diagrama
en bloques se presenta en la figura 3, realiza la conversión bit a
bit comenzando desde el más significativo.

En un primer momento se fija el valor del MSB del registro
de aproximaciones sucesivas (SAR) a uno, lo que lleva la salida
del convertidor digital-analógico (DAC) a un valor de tensión
ubicado en la mitad del rango de medición. Si la tensión de
entrada es mayor, el bit se deja en 1, de lo contrario se cambia a
0. Este proceso se repite para el resto de los bits del SAR hasta
obtener la salida deseada de n bits.

Existe una variante de esta topología pensada para reducir
el consumo de energía en la cual las aproximaciones sucesivas
se realizan modificando el balance de carga de un banco de
capacitores [4], en la figura 2 se muestra el diagrama en
bloques correspondiente. El banco de capacitores consta de n+1
capacitores siendo n el número de bits de resolución del
convertidor. El primer capacitor tiene un valor C, el segundo un
valor C/2, el tercero C/4 y así sucesivamente, hasta los dos
últimos, cuyo valor será C/2n-1.

Figura 1. Convertidor de aproximaciones sucesivas.

julio
XI Southern Conference on Programmable Logic SPL2023 5

Figura 2. Convertidor SAR de redistribución de carga

Un juego de llaves analógicas permite conectar el borne
superior de estos capacitores a la tensión de entrada, a una
tensión de referencia o a masa, y la entrada inversora del
operacional que coincide con el borne inferior de los
capacitores a masa. En la fase inicial de la conversión todos los
capacitores se cargan con Vi, luego el primer capacitor se
conecta a Vref y el resto a masa, por lo que se constituye un
circuito serie entre C y el resto de los capacitores conectados en
paralelo. La tensión a la entrada del comparador resultará:

Ventrada comparador= -Vi + Vref/2

Dependiendo de si este resultado es positivo o negativo se
determina el valor del primer bit, y también se define la
posición de la llave del primer capacitor para el siguiente paso.
Si el primer bit fue0 el capacitor 1 se conecta a masa, de otra
manera se deja conectada a Vref. El proceso continúa
conectando el siguiente capacitor (C/2) a la tensión de
referencia, con lo que la tensión a la entrada del comparador,
por ejemplo, en el caso de que el primer bit haya tenido un
valor alto resulta igual a:

–Vi + (3/4)Vref

Se continúa de esta manera durante n ciclos hasta que se
haya determinado el valor de todos los bits.

Dado que todo el nodo se va a implementar en tecnología
CMOS como un sistema monochip, resulta imprescindible
realizar la mayor cantidad de testeos posibles antes de su
implementación para lograr una elevada confiabilidad de
funcionamiento. El prototipo desarrollado permite verificar la
influencia de los valores de los capacitores, la impedancia de
las llaves analógicas y los tiempos de respuesta del resto de los
componentes del circuito en la redistribución de la carga del
convertidor y sus prestaciones finales.

II. DESARROLLO

El prototipo se implementó utilizando una placa de
desarrollo Digilent Netsys con una FPGA Xilinx Spartan 3E
para el módulo digital y un circuito con elementos discretos
montados en una plaqueta para el módulo analógico a fin de
evaluar el impacto de los distintos parámetros de
funcionamiento (valor de los capacitores y resistencia de las
llaves, frecuencia, retardos, solapamiento de llaves, consumo
etc.) en el funcionamiento general, como testeo que
complemente la simulaciones previas al diseño como circuito
dedicado en tecnología CMOS. Si bien la resolución necesaria
para la aplicación prevista es de 10 bits, el convertidor que se
implementó en el prototipo tiene una resolución de 2 bits a fin
de simplificar el armado de la parte analógica, dado que todos
los elementos en estudio toman parte en esta conversión. El
diagrama en bloques del conjunto se observa en la figura 3.

z

Figura 3. Diagrama en bloques

Módulo Digital

Como se ve en la figura 3, el módulo de control se compone
de un bloque de configuración, encargado de permitir la
selección de los tiempos de conexión y desconexión de las
llaves, y un bloque de conversión que controla la apertura y
cierre de las llaves analógicas en la secuencia correcta a partir
de la información recibida desde el comparador analógico.

En el inicio el módulo se encuentra en estado de espera
hasta que llegue la orden de configurar, en cuyo caso se pasará
al estado de configuración, o bien la orden de iniciar el
funcionamiento del conversor, dando paso al estado de
conversión.

Dado que los conmutadores no pueden implementarse de
manera ideal, existirá un tiempo en que todas las llaves estén
abiertas en cada conmutación, lo que garantiza que no se
modificará la carga almacenada en los capacitores. En el estado
de configuración se cargan los registros correspondientes a los
tiempos de conexión y desconexión de las llaves analógicas
para evaluar su impacto en el funcionamiento general. Al
activar la entrada de selección se carga en el registro del tiempo
correspondiente el valor seteado mediante las llaves que posee
la placa de desarrollo. Para pasar al tiempo siguiente se vuelve
a activar la entrada de configuración. De esta manera se evita el
efecto del posible rebote mecánico de los pulsadores. Mediante
sendos LED se puede conocer en qué estado se encuentra el
dispositivo y, en el estado de configuración, cuál es el tiempo
cuyo valor se está fijando. En cualquier momento de este
proceso en que se active la entrada “convertir”, se pasa al
estado de conversión con los valores de tiempos que se hayan
fijado hasta ese momento.

En el estado de conversión se habilita el funcionamiento del
módulo conversor, encargado de generar la secuencia correcta
de apertura y cierre de las llaves analógicas de acuerdo al
estado de la salida del comparador analógico. Esta secuencia es
transferida a través de la señal “datos” de 9 bits al módulo de
control de llaves que se encarga de la adecuada temporización
de la apertura y cierre de las mismas, a partir de los tiempos
fijados en el estado de configuración ya descripto.

MODULO DIGITAL

MODULO ANALOGICO

MODULO DE CONFIGURACION

reset config. select. conv.

Llaves
in

MODULO DE CONVERSION

convertir tiempo1 tiempo2

CONTROL
CONTROL
DE LLAVES

datos

llaves

set

disponible

salida comparador

julio
XI Southern Conference on Programmable Logic 6

Módulo Analógico

Cada valor de capacidad se obtuvo mediante la conexión en
paralelo de la cantidad necesaria de capacitores del mismo
valor, seleccionados por su valor a fin de compensar las
tolerancias individuales y obtener las relaciones de magnitud
tan próximas a las deseadas como fuera posible. Si bien
inicialmente se utilizaron protoboards para el armado del
circuito, por cuestiones de ruido inducido se decidió
implementar el circuito analógico soldando los componentes en
una plaqueta. Las llaves analógicas se implementaron mediante
circuitos integrados CD4066 mientras que para el comparador
se utilizó el amplificador operacional de entrada FET TL082,
todos de fácil obtención en el mercado local. La tensión de
alimentación mínima del operacional no debería ser inferior a
±5V. Por otra parte, el valor de la resistencia serie de las
puertas de transmisión que constituyen las llaves analógicas
depende fuertemente de la tensión de control aplicada, siendo
menor cuanto mayor sea ésta. Para satisfacer estos requisitos se
alimentó este bloque con una fuente partida de ±5V,
alimentando las llaves analógicas entre +V y –V. Dado que la
tensión de alimentación de la FPGA está fija entre 3,3V y
masa, se realizó un acoplamiento óptico de las señales que
intercambian ambos módulos mediante optoacopladores de dos
canales CNY74-2 a fin darle flexibilidad de alimentación a la
parte analógica. La tensión de referencia se fijó en 2,5 V para
mantener los valores de tensión a la entrada del comparador
dentro del rango de tensiones admitido por el operacional. La
incorporación de estos optoacopladores limita la frecuencia de
uso del prototipo a valores menores a 100 Khz.

RESULTADOS DE SIMULACIÓN

En las figuras 4 y 5 se observan los resultados de la
simulación del módulo digital. En la primera imagen se observa
el proceso de configuración: A partir de la activación de la
señal “configurar” el sistema pasa del estado de espera al
estado de configuración, en el cual se van fijando
sucesivamente los tiempos de apagado y encendido de las
llaves analógicas, almacenados en las variables “tiempo_1” y
“tiempo_2”, mediante sucesivas activaciones de las señales
“convertir_in” y “selector_in” que van provocando los cambios
de estado “espera_tiempo_1”, espera_tiempo_2”, etcétera. Una
vez realizados estos ajustes, mediante la activación de la señal
“convertir_in” el estado cambia a “conversión”

En la segunda imagen se observa el proceso de conversión.
El sistema va atravesando sucesivamente los estados de
“referencia”, “primer_bit” y “segundo_bit”. Cada uno de estos
estados implica la conexión y desconexión de las
correspondientes llaves analógicas a partir de la información
contenida en la señal “datos”. Esta señal es enviada al módulo
de control de llaves mediante un proceso de handshake que
envía una señal “set” cuando el módulo de control de llaves se
encuentra disponible. Al recibir esta señal el módulo baja la
señal “disponible” y procesa la información recibida con la
temporización que fue fijada en el proceso de configuración, lo
que se ve en los distintos estados “retardo” y “configuración”
de la señal “estado_control_llaves”. Una vez realizado este
proceso se vuelve a activar la señal “disponible” y el módulo de
control envía el siguiente dato.

Figura 4. Simulación de la configuración

Figura 5. Simulación de la conversión

julio
XI Southern Conference on Programmable Logic SPL2023 7

En cada uno de estos intercambios se va actualizando el bit
correspondiente del registro de aproximaciones sucesivas “sar”
a partir de la información enviada por la salida del comparador
desde la parte analógica. Este proceso continúa
indefinidamente hasta que se pulse nuevamente la señal
“configuración”

RESULTADOS DE ENSAYOS

En las figuras 6 y 7 se observa la forma de onda de la
tensión en la entrada del comparador para dos combinaciones
de tiempos de conexión y desconexión distintas. Se puede
observar el cambio de la frecuencia de conmutación de los
capacitores. Las figuras 8 y 9 muestran el equipo bajo testeo y
un detalle del equipo.

III. CONCLUSIONES

Se desarrolló e implementó un prototipo dedicado al estudio
de la temporización de un convertidor analógico-digital de
aproximaciones sucesivas por reparto de carga. Para la
implementación del módulo de control se utilizó una placa de
desarrollo que contiene un dispositivo Spartan3E500 de
Xilinx. Los componentes del módulo analógico (banco de
capacitores, llaves conmutadoras y circuito comparador) se
implementaron mediante circuitos integrados comerciales y
elementos discretos de fácil acceso en el mercado local. Para
permitir mayor libertad en cuanto a las tensiones de
alimentación se estableció un acoplamiento óptico entre ambos
módulos.

Con este prototipo se pretende evaluar el impacto de los
parámetros que influyen en el funcionamiento general (valor
de los capacitores y resistencia de las llaves, tensiones de
alimentación, frecuencia, retardos, solapamiento de llaves,
etc.) y, especialmente, en el consumo del circuito.

IV. REFERENCIAS
[1] M. I. Schiavon, D. Crepaldo, C. Varela “Control para convertidor

analógico-digital de aproximaciones sucesivas” 10th Southern
Conference on Programmable Logic (SPL´19), Buenos Aires, Argentina.
Abril 2019

[2] .M. I. Schiavon, D. Crepaldo, “Autonomous wireless intelligent network
accessible via IP” 7th Southern Conference on Programmable Logic
(SPL´11), Córdoba, Argentina. Abril 2011.

[3] M. I. Schiavon, D. Crepaldo, C. Varela “Análisis comparativo de
topologías de convertidores analógico-digitales.” IX Congreso de
Microelectrónica Aplicada (UEA2018). Universidad Nacional de
Catamarca, Catamarca, Argentina, 2018.

[4] Renesas Application note R14AN0001EU0100, “Analog-to-Digital
Converters. Operation of a SAR-ADC Based on Charge Redistribution”.
Sept. 2020

Figura 6. Tensión a la entrada del comparador (caso 1)

Figura 7. Tensión a la entrada del comparador (caso 2)

Figura 8. Testeo del prototipo

Figura 9. Detalle del prototipo

julio
XI Southern Conference on Programmable Logic SPL2023 8

SHA-3 Implementation for Post-Quantum
Cryptography using High-Level Synthesis

Fernando Aparicio Urbano-Molano and Jaime Velasco-Medina
Bionanoelectronics Research Group

Universidad del Valle
Cali, Colombia

{fernando.urbano, jaime.velasco}@correounivalle.edu.co

Abstract—This paper presents the implementation of SHA-
3 and SHAKE128 using High-Level Synthesis (HLS). The al-
gorithms were initially written in C language and then they
were modified and optimized using some directives of the Vivado
HLS. Finally, they were synthesized in Vivado on the Virtex-7
XC7VX485T-FFG1157-1, and the Stratix IV EP4SGX230KF40C2
using Intel Quartus Prime Standard Edition. The HLS implemen-
tations were compared with those found in the literature, and
they were found to have improved frequency, clock cycles, and
efficiency. The implementations used an average of ∼2% of LUTs
on the Virtex-7 and ∼5.8% of ALUTs on the Stratix-IV. Then,
implementations can be embedded into resource-constrained
devices for the Internet of Things (IoT) applications. HLS
tools allow for efficient design, testing, and implementation of
algorithms. Then, HLS-based design is suitable for the hardware
implementation of post-quantum cryptography, where complex
schemes composed of multiple algorithms can be implemented
in a shorter time than using hardware description languages.

Index Terms—SHA-3, SHAKE128, High-Level Synthesis,
FPGA, Post-Quantum Cryptography.

I. INTRODUCTION

In December 2016, the National Institute of Standards and
Technology (NIST) of the U.S. Department of Commerce
initiated the development and standardization process for
Public-Key Post-Quantum Cryptography (PQC) [1]. The goal
was to achieve PQC systems secure against attacks generated
from classic and/or quantum computation. Three Digital Sig-
nature Algorithms and one Public-Key Encryption and Key-
establishment were currently standardized. Four other PQC
candidates advanced to the next round. Some candidates use
the Secure Hash Algorithm-3 (SHA-3) family of functions [2]
for deterministic random bit generation and matrix generation
key, among others.

To the best of our knowledge, the previous works are
related to the Keccak and SHA-3 hardware implementations,
and none of them is about the extendable-output functions
(XOFs), SHAKE128 and SHAKE256. Since the standardiza-
tion process began and after the publication of the standard,
several papers have been published, but few of them use High-
Level Synthesis (HLS) design methodology. For example, the
authors in [3] presented one of the first FPGA implementations
of Keccak-256 and Keccak-512 on Xilinx Virtex-5 FPGA.

This work was supported by Ministry of Science, Technology, and Innova-
tion of Colombia, and Universidad del Valle university.

The authors do not report or explain how they get throughput
results in that work.

Other recent works are [4] and [5]. In [4], the authors
presented a hardware implementation of SHA-3 - 256 syn-
thesized into the FPGA Intel Arria. The achieved results have
shown a high throughput, and in [5], the authors presented
a hardware implementation of SHA-3 for the PQC Classic
McEliece scheme.

This work aims to use HLS tools to design the SHA-3
– 512 used by the CRYSTAL-Kyber PQC scheme and the
SHAKE128, one of the SHA-3 family of functions used by
other PQC candidates. In this case, HLS reduces the design
efforts and development time; thus, it is a promissory hardware
design approach for Internet of Things (IoT) applications. We
synthesized the designs on Virtex-7 and Stratix IV FPGA,
and we reported experimental results for frequency, area,
throughput, and efficiency.

This paper is structured as follows: Section II describes
the Keccak and SHA-3 algorithms. Section III presents the
HLS-based synthesis and verification approach. Section IV
presents the hardware implementation results and comparisons
with other recent similar works in terms of area, frequency,
throughput, and efficiency. Finally, Section V presents the
conclusion of the work.

II. BACKGROUND

The Keccak algorithm is a hash function designed by Guido
Bertoni et al. [6] based on sponge construction. Keccak has
seven permutations denoted as Keccak-f[b], where b is the
width and can be 25, 50, 100, 200, 400, 800, or 1600-bit.
For this work, b is 1600-bit, and b = r + c, where c is
the capacity of the sponge function, and r is a bit-rate (see
Table I). The Keccak-f[b] are structures consisting of a
sequence of identical rounds. The number of rounds is given
by nr = 12 + 2l; where 2l = b/25. In this way, l = 6, and
nr is 24. The Sponge_Keccak [b](M) algorithm takes an input
(M) of arbitrary bit-length and performs a hash transformation
on an internal state to produce an output (L) of the desired
bit-length.

The cryptographic hash functions are called SHA-3 - 224,
SHA-3 - 256, SHA-3 - 384, and SHA-3 - 512, and the XOFs
are called SHAKE128 and SHAKE256. In hash functions,
the input is called the message, and the output is called the

https://orcid.org/0000-0003-1074-8701
julio
XI Southern Conference on Programmable Logic SPL2023 9

Algorithm 1 Keccak-f[b]

Input: S of length b; nr.
Output: S′ of length b.

1: A ← State Array S
2: for i = 0 to nr − 1 do
3: A ← Round(A, i)
4: end for
5: S′ ← A
6: return S′

Algorithm 2 Sponge_Keccak[b](M)

Input: M and b.
Output: L.

Padding:
1: P ← M ∥ pad[r](|M |)

Absorbing:
2: for i = 0 to len|P |/r − 1 do
3: S ← S ⊕ (Pi ∥ 0c)
4: S ← Keccak−f [b](S)
5: end for

Squeezing:
6: while |L|rr < l do
7: S ← Keccak−f [b](S)
8: L ← L ∥ [S]r
9: end while

(message) digest or hash value. A cryptographic hash function
is designed to provide unique properties such as collision
resistance and preimage resistance that are important for many
information security applications [2].

Algorithm 1 carries out the following steps: 1) The b-bit
string S is converted to a tridimensional state-array A; 2) The
state-array A is computed with the function Round; 3) The last
state-array A is converted to b-bit string S’ [2].

According to Algorithm 1, the main operation is the Round
function, which processes the state using five transformations:
χ, θ, ρ, π, and ι, which is the addition of round constants (RC).
These transformations are based on simple logic operations:
rotations (ROT), AND, XOR, and NOT. The round constants
are 64-bit signals represented in hexadecimal form.

As seen before, Keccak is based on sponge construction,
which has three stages if the input is included: Padding,
Absorbing, and Squeezing.

Algorithm 2 describes the Sponge_Keccak[b](M) function.
Where S is the state, and P is the padded message that
produces a length multiple of r. This step is conceived to
improve the algorithm against length extension attack [7]. The
operator ∥ represents bit-concatenation.

Table I presents the parameters r and c for SHA-3.
The standard has specified four output lengths for SHA-3.

Table I
PARAMETERS r AND c FOR SHA-3

SHA-3 r c
SHA-3 - 256 1088 512
SHA-3 - 512 576 1024
SHAKE128 1344 256

However, the XOF; SHAKE128 and SHAKE256 can have any
length.

Thus, the SHA-3 can be described as:

SHA− 3− c(M) = Sponge_Keccak[r + c](M ∥ 01) (1)

The two XOF functions are defined as:

SHAKE128(M,d) = Sponge_Keccak[256](M ∥ 1111, d)
(2)

SHAKE256(M,d) = Sponge_Keccak[512](M ∥ 1111, d)
(3)

Where d is the desired output length.

III. SHA-3 HARDWARE IMPLEMENTATION USING HLS

One disadvantage of FPGA implementation using hardware
description languages are its time-consuming design. It is well-
known that some implementations in the field of hardware-
based cryptography can take several months or even years
during the product development process. HLS can facilitate
this process because a reference implementation in C of the
design or algorithm can be suitable for generating a hardware
module automatically or with just one minor modification.

The first step of the HLS-based design process is to use
the C reference implementation and evaluate its suitability
for HLS synthesis. In most cases, it is required to carry out
modifications. The next step is to run a simulation using a C
testbench. One of the advantages of HLS tools is that they have
directives, known as "pragmas" that allow for better design.
The final step is the synthesis that generates an RTL HDL. If
the results are not as expected, it is necessary to evaluate what
modification or additional pragmas are required.

The SHA-3 C code selected for hardware implementation
was the improved version written by Daniel J. Bernstein, Peter
Schwabe, and Gilles Van Assche1 and is used for most of the
PQC algorithms. The design process was the same for all the
implementations.

Our first hardware implementation using HLS was made
from the original C code with the main functions (see Fig. 1).
To improve performance, we used pragmas, including unroll
to enable some loops iteration to be executed in parallel and
array_partition to increase throughput. However, the HLS
synthesis generated some RAM blocks that were not present
in the C code. We addressed this issue by replacing a constant
static function used in the C code to generate RC constants
with a switch case inside the Keccak-f[b] function. This
modification not only reduced the area but also eliminated
the RAM blocks.

1https://keccak.team/2015/tweetfips202.html

julio
XI Southern Conference on Programmable Logic SPL2023 10

Figure 1. HLS modules.

The absorbing function described in the original C code
uses a static function that takes an 8-bit array as input and
generates a 64-bit output (load64) in the Keccak-f[b] function.
However, since this function is generic, it needs to be made
more specific and included in the main function, as follows:

for (i = 0; i < r; i++)
temp[i] = 0;

for (i = 0; i < 17; i++)
temp[i] = input[i];

temp[i] = 0x1F;
temp[r - l] |= 128;
for (i = 0; i < r/8; i++)

s[i] ^= load64(temp + 8 * i);

The same was made for the squeezing function. A Python
script implementing SHA-3 was created to generate a text file
with the output, which was then read by a C simulation file
to compare it with the obtained results.

After obtaining the initial result, we optimized the hard-
ware implementation using specific C directives for HLS. For
instance, we used the pragma pipeline directive to improve
the performance of some loop iterations, and we also utilized
the apint_set_range directive, which we defined as set_range.
These modifications are presented in detail below:

for (i = 0; i < 2; i++){
z = set_range(z,15,0,ROL16(input[4*i+0],8));
z = set_range(z,31,16,ROL16(input[4*i+0],8));
z = set_range(z,47,32,ROL16(input[4*i+0],8));
z = set_range(z,63,48,ROL16(input[4*i+0],8));
s[i] ^= z;
}
s[2] = set_range(s[2], 7, 0, 0x1F);
s[20] = set_range(s[20], 63, 63, 1);

In the above C code, ROL16 is defined as an offset (rota-
tion), and the changes in the squeezing function are similar.
The results improved with these changes (see Results section).
In Table II, the SHAKE128 implementations are renamed to
facilitate results and comparisons.

A. Throughput and Efficiency

The synthesis results used for comparison purposes are
frequency (F) and area (A). These parameters allow to deduce
the following metrics; 1) throughput, described by equation
(4), is calculated using the bit-rate (r) (Table I) and the
maximum frequency in MHZ. 2) the number of clock cycles
(C) needed to generate the hash value, and 3) efficiency,

Table II
SHAKE128 IMPLEMENTATIONS

Implementation Name
I SHAKE128(128, 128)
II SHAKE128(144, 163840)
III SHAKE128(144, 10240)
IV SHAKE128(76928, 256)

Table III
SYNTHESIS RESULTS FOR IMPLEMENTATION III

Implementation FFs LUT BRAM Fmax
(MHz)

Clock
Cycles

Original 12354 37048 5 134.86 3929
Improved 5101 7610 0 135.72 480

described by equation (5), which is the relation between the
throughput and area.

TP =
(r × F)

C
(4)

E =
TP

A
(5)

IV. IMPLEMENTATION RESULTS

In this section, we present the synthesis results of the HLS
implementations. We used AMD Xilinx Vivado HLS 2020.1
tools and an FPGA Virtex-7 xc7vx485t-ffg1157-1. In this case,
co-simulations were performed to verify the output results.
The VHDL generated was synthesized on the same Virtex-7
using Vivado 2021.1 and the Stratix IV EP4SGX230KF40C2
using Intel Quartus Prime 21.1 Standard Edition; the above
was possible because we don’t use any specific library.

Table III presents the synthesis results for implementation
III. The table shows differences between the original imple-
mentation and the optimized implementation, where the last
one reduces the LUTs by 20%, FFs by 41.29%, clock cycles
by 12.21%, and eliminates memory blocks (BRAM). This
optimized implementation was used as the basis for the other
implementations.

Table IV presents the synthesis results for all HLS imple-
mentations. The table shows that they use few area resources,
and the frequency is almost the same for all, except for
the implementation II on Virtex-7. The first implementation
presents good throughput and efficiency, but the others are
relatively low in Mbps order. Until the publication of this
paper, we could not find works with SHAKE128 results to
make comparisons. Almost all implementations use ∼3% of
total area utilization on the Virtex-7 and ∼5.8% of total area
utilization on the Stratix-IV. For the case of FFs, they use ∼1%
on the Virtex-7 and ∼2% on the Stratix-IV.

In this work, we implement the SHA-3 - 512 of the PQC
CRYSTALS-Kyber scheme. However, it is not possible to
make a fair comparison with this implementation because we
could only find one work that used HLS for SHA-3 - 256. In
Table V, for computing area and comparison purposes, we use

julio
XI Southern Conference on Programmable Logic SPL2023 11

Table IV
SYNTHESIS RESULTS FOR THE IMPLEMENTATIONS

Implementation FPGA FFs
Area/
Utilization
(%)

Fmax
(MHz)

Clock
Cycles

TP
(Gbps) E

I Virtex-7 3240 6399 LUT / 2 143.31 67 2.87 0.4493
I Stratix IV 3231 5949 ALUT / 5 148.02 67 2.97 0.4991
II Virtex-7 5110 7642 LUT / 3 115.19 7206 0.02 0.0028
II Stratix IV 5098 6308 ALUT / 6 145.07 7206 0.03 0.0043
III Virtex-7 5101 7610 LUT / 3 135.72 480 0.38 0.0499
III Stratix IV 5090 6289 ALUT / 6 147.80 480 0.41 0.0658
IV Virtex-7 6789 9983 LUT / 3 144.40 5837 0.03 0.0033
IV Stratix IV 6763 8014 ALUT / 8 150.42 5837 0.03 0.0043

SHA-3 - 512 Virtex-7 2597 6234 LUT / 2 162.31 49 1.91 0.3061
SHA-3 - 512 Stratix-IV 2595 5662 ALUT / 4 144.78 49 1.70 0.3006

Table V
SYNTHESIS RESULTS, THROUGHPUT AND EFFICIENCY FOR SHA-3

Ref. FPGA Area
(Slices)

Fmax
(MHz)

Clock
Cycles

TP
(Gbps) E

[8] Zynq-7000 735 118 20000 0.0068 0.000009
[8] Zynq-7000 1174 124 70 2.97 0.0016

This
Work Virtex-7 1559 162.31 49 1.91 1.22

the relation that one Slice contains four LUTs using vendor
information for Virtex-7 2 . The results show that the efficiency
is highly improved compared with others.

V. CONCLUSION

In this paper, we present the hardware implementation of
the SHA-3 - 512 for PQC CRYSTALS-Kyber scheme and its
SHAKE128 variant using High-Level Synthesis. The original
version write in C-language was modified slightly for an
initial compilation in the AMD Xilinx Vivado HLS 2020.1.
We found the directive apint_set_range that allowed the
optimization of the implementations, getting good synthesis
results with improvements in clock cycles, area, throughput,
and efficiency. The VHDL generated was synthesized on
Virtex-7 xc7vx485t-ffg1157-1 using Vivado 2021.1 and on
the Stratix IV EP4SGX230KF40C2 using Intel Quartus Prime
21.1 Standard Edition.

The synthesis results show that the SHA-3 implementation
use few area resources and has a good throughput. They
present improvements in frequency, clock cycles, and effi-
ciency compared to others found in the literature using HLS.
Our designs used an average of ∼2% of total LUTs available
on a Virtex-7 and ∼5.8% of average ALUTs utilization on
the Stratix-IV. From the above results, it is possible to con-
clude that the HLS design is suitable for resource-constrained
devices such as the ones used for IoT applications.

Also, these results allowed us to confirm that HLS is a suit-
able design methodology for fast hardware implementation of

2https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview

cryptography algorithms, achieving minimal time-consuming
development.

With this work, we have verified the efficiency of HLS
tools and the significance of understanding its directives. This
tool will allow the implementation of PQC CRYSTALS-Kyber
scheme. To make a fair comparison, it is also necessary to
implement the same algorithms in hand-coded VHDL and
synthesize them on the same FPGAs.

ACKNOWLEDGMENT

Fernando Aparicio Urbano-Molano would like to express
his gratitude to the Ministry of Science, Technology, and
Innovation of Colombia for the scholarship, as well as the
AMD University program, the Intel FPGA University program,
and the Universidad del Valle university.

REFERENCES

[1] “Federal register: Announcing request for nominations for public-
key post-quantum cryptographic algorithms.” [Online]. Available:
bit.ly/3XxtC8O

[2] N. I. o. S. a. Technology, “SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions,” U.S. Department of Commerce, Tech.
Rep. Federal Information Processing Standard (FIPS) 202, Aug. 2015.
[Online]. Available: https://csrc.nist.gov/publications/detail/fips/202/final

[3] I. San and N. At, “Compact Keccak Hardware Architecture for Data
Integrity and Authentication on FPGAs,” Information Security Journal:
A Global Perspective, vol. 21, no. 5, pp. 231–242, Jan. 2012, publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/19393555.2012.660678.
[Online]. Available: https://doi.org/10.1080/19393555.2012.660678

[4] A. Sideris, T. Sanida, and M. Dasygenis, “High Throughput Pipelined Im-
plementation of the SHA-3 Cryptoprocessor,” in 2020 32nd International
Conference on Microelectronics (ICM), Dec. 2020, pp. 1–4.

[5] X. Zhou, L. Wu, and X. Zhang, “Hardware Design of SHA-3 for PQC
Classic McEliece,” in 2021 IEEE 15th International Conference on Anti-
counterfeiting, Security, and Identification (ASID), Oct. 2021, pp. 140–
144, iSSN: 2163-5056.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,” in
Advances in Cryptology – EUROCRYPT 2013, ser. Lecture Notes in
Computer Science, T. Johansson and P. Q. Nguyen, Eds. Berlin,
Heidelberg: Springer, 2013, pp. 313–314.

[7] S. El Moumni, M. Fettach, and A. Tragha, “High throughput
implementation of SHA3 hash algorithm on field programmable gate
array (FPGA),” Microelectronics Journal, vol. 93, p. 104615, Nov.
2019. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0026269218308061

[8] H. S. Jacinto, L. Daoud, and N. Rafla, “High level synthesis using vivado
HLS for optimizations of SHA-3,” in 2017 IEEE 60th International
Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2017,
pp. 563–566, iSSN: 1558-3899.

bit.ly/3XxtC8O
https://csrc.nist.gov/publications/detail/fips/202/final
https://doi.org/10.1080/19393555.2012.660678
https://www.sciencedirect.com/science/article/pii/S0026269218308061
https://www.sciencedirect.com/science/article/pii/S0026269218308061
julio
XI Southern Conference on Programmable Logic SPL2023 12

A deep learning application for edge-computing
device

Roberto Millón∗1, Federico Favaro†2 and Pablo Ezzatti†3

∗Departamento de Ciencias Básicas y Tecnológicas, UNdeC
Chilecito (5360), La Rioja, Argentina

1rmillon@undec.edu.ar
†Facultad de Ingeniería, UDELAR.

Julio Herrera y Reissig 565, Montevideo, Uruguay
2ffavaro@fing.edu.uy
3pezzatti@fing.edu.uy

Abstract—Deep learning has become the optimal choice
within machine learning for solving specific problems, such as
natural language recognition and computer vision. However,
deep learning models require more powerful computing than
other computational tools.In this scenario, FPGAs have shown
great acceptance within the available options due to low power
consumption and high performance. In addition, new develop-
ment tools offered by FPGA manufacturers allow high-level
synthesis approaches, avoiding hardware-level complications.
Instead, managing the development tools to achieve the goals
is mandatory. In this study, we design and train a custom CNN
to classify handwritten digits of the MNIST database. Then, we
compare the performance of the CNN model in two different
hardware platforms: an MPSoC ultra96-V2 board and a PC
with high-end characteristics. The entry-level MPSoC board
classified 10k images in 5.22 seconds, whereas the PC spent
11.64 seconds.

Keywords—Machine Learning, Deep Learning, PYNQ,
MNIST, Tensorflow2.

I. INTRODUCTION

Deep learning is a research field within the machine
learning area to obtain high-level abstractions in data using
hierarchical architectures to imitate how the biological brain
perceives and understands information [1]. In 2006, deep
learning gained popularity due to the limitations of con-
ventional machine learning techniques for processing raw
data, requiring extensive domain expertise and engineering
to detect and classify patterns. This technology overcomes
the aforementioned limitations by extracting eigenvectors
from the data through serially connected nonlinear multi-
layer models called deep neural networks (DNN) [2].

Deep learning has become the de-facto approach for
numerous application fields, such as natural language recog-
nition, acoustic modeling, financial fraud detection, and
computer vision [3]. Within computer vision applications,
a particular class of DNN called convolutional neural net-
works (CNN) are the most widely used, even though they
are the networks that demand the highest time and power
processing. As CNN become deeper, by increasing the num-
ber of layers in their architecture, they require technologies
with more computing power than conventional processors
(CPUs), such as GPUs, FPGAs, and ASICs -like the TPU
offered by Google [4], [5].

Researchers generally choose hybrid approaches for train-
ing and deploying DNN. The most common method is

to perform offline neural network training with clusters
of high-performance CPUs or GPUs and then transfer the
model parameters to other technologies for online inference.
FPGAs show an increasing acceptance of the available
alternatives to carry out network inference due to their high
throughput, low latency, and low energy consumption [6]–
[9].

Driven by those advantages, in recent years, FPGA man-
ufacturers have developed high-level tools to model neural
networks like Xilinx Vitis AI, Intel Open Vino, and Lattice
SensAI. These technologies use conventional artificial intel-
ligence frameworks, such as Tensorflow, Caffe, and Pytorch,
among others, to model, develop and experiment with neural
networks later deployed on FPGAs [10]. In particular, Xilinx
Vitis AI includes neural network models, dedicated software
cores for deep learning processing (DPU), and libraries for
developing intelligence applications. This strategy allows
data scientists without knowledge of hardware development
to access the benefits of FPGAs.

This work evaluates the use of FPGAs for computing
the CNN workflow for inference with a focus on runtime.
Specifically, we use the AI paradigm to classify handwritten
digits from the MNIST database with the PYNQ 2.7, DPU-
PYNQ, and Tensorflow2 frameworks. The FPGA we use for
this research is the Avnet ultra96-V2 board, which includes a
high-performance and production-ready computing solution
based on the Zynq Ultrascale+ multiprocessor system-on-
chip (MPSoC) ZU3EG A484. Our focus is on the inline
inference stage, so the training stage of a custom CNN
model is performed offline, i.e., on a high-level server.

II. IA BACKGROUND

A deep learning model comprises multiple layers of
nonlinear processing arranged in series. Data entering the
model is passed through the layers to perform various
operations until a feature or classification result is obtained
in the final layer [11]. Fig. 1 shows the difference between
a conventional machine learning model and a deep learning
model. In the former, a domain expert extract features from
the data, unlike a deep learning model where the net does
all the processes.

CNN is the most widely used deep learning approach
for computer vision applications; its architecture consists of

julio
XI Southern Conference on Programmable Logic SPL2023 13

Fig. 1. ML vs DL (Source: softwaretestinghelp.com).

multiple layers trained to minimize an error function. Three
types of layers are used in a CNN, as shown in Fig. 2.
First, convolutional layers perform convolution operations
between the image and different kernels to obtain data
features. Second, pooling layers reduce the dimensions of
those features. Finally, a fully-connected layer operates
like a conventional neural network converting 2D feature
matrices into a vector to classify images [1].

Fig. 2. CNN (Source towardsdatascience.com)

The design and training of deep learning models require
an extensive collection of labeled data. With the advance of
technology, the amount of data available has dramatically
increased, although the data quality is not always sufficient.
Because of this, it is common to test deep learning models
with established databases such as MNIST. It consists of
70k images of handwritten digits with labels, of which 60k
are for training and 10k for testing the neural network.
Every image is a two-dimensional 28x28 pixels size in
grayscale [12].

Fig. 3. MNIST database (Source medium.com/)

III. TRAINING AND INFERENCE OF THE CNN MODEL

The workflow of a deep learning project begins with
selecting and pre-processing the data of interest. Then, the
developer designs and trains the appropriate neural network
model for the application. These stages are simplified with
Keras and tensorflow2 libraries by incorporating a connec-
tion to popular databases such as MNIST, the database used
in this work.

The neural network design was carried out within a
jupyter environment using the libraries mentioned before.
The neural network comprises a convolutional layer in-
tegrated by 32 kernels with a RELU activation function,
a pooling layer, a hidden layer with a RELU activation
function, and an output layer with a softmax function. The
model compilation was performed with the adam optimizer
and the sparse categorical cross-entropy probability metric.
Fig. 4 summarizes the CNN model composition.

Fig. 4. CNN model.

The model was trained with five epochs to obtain optimal
accuracy. An additional quantization step was necessary to
get a more efficient model for the use of resources. Quan-
tization consists of approximating the 32-bit floating point
values of the weights and biases to 8-bit integers, achieving
considerable resource reduction without compromising the
model’s accuracy. At this moment, the model is prepared to
be used in an application.

The inference stage began with developing an application
in the jupyter environment and loading the dpu.bit, dpu.hwh,
and mnist.xmodel files, the last one generated during model
training. The application runs on the ultra96-V2 board to
classify the MNIST dataset’s test data. This work highlights
two inference parameters: test accuracy and execution time.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental setup and summa-
rizes the results obtained from the evaluation of the inference
stage of our CNN.

A. Experimental Setup and CNN deployment

The development environment was established in a PC
with an Intel Core i7-4870HQ CPU, 16 GB of RAM,
and 512 GB of SSD, with Ubuntu 18.04.5 LTS OS, and
the Xilinx tools Vitis 2021.1, Xilinx Runtime (XRT) for
embedded platforms, and Vitis AI 1.4.916 docker image. In

julio
XI Southern Conference on Programmable Logic SPL2023 14

addition, the design and training of the CNN model was
executed on the PC. We selected two hardware platforms to
infer the neural network: the PC and the MPSoC ultra96-V2
board with PYNQ 2.7 framework.

On the MPSoC board side, we chose the DPU-PYNQ
repository that contains the Vitis AI deep learning processor
unit (DPU) for deploying CNN and some training and infer-
ence notebooks examples ready to run on the device [13].

The following steps were performed to create and deploy
the neural network in the ultra96-V2. First, we generated the
4 device-dependent files: dpu.bit, dpu.hwh, dpu.xclbin, and
arch.json. These files are mandatory to create the custom
CNN model. Second, we executed the Vitis AI docker
container and selected the ML framework, in this case,
Tensorflow2. The design and development of the CNN
model were achieved inside a jupyter notebook.

Finally, the DPU-PYNQ overlay was installed in the
ultra96-V2 inside a jupyter notebook. This step configured
the DPU core in the PL and connected it to the PS of
the MPSoC. With the PYNQ framework, there is no need
to struggle with complicated low-level hardware design.
Instead, the overlays, or hardware libraries, can be easily
configured and imported to the project.

B. Test Cases

The neural network tests were run on the two hardware
platforms using the 10k test images from the MNIST
database.

C. Experimental Analysis

In our experimental study, we evaluate two hardware
platforms to understand the performance of the Ultra96-V2
board in the deep-learning field. Specifically, we developed
three variants of the MNIST model. A quantized variant of
MNIST leverages the MPSoC board. The other two execute
on the PC and correspond to quantized and not quantized
MNIST models.

Every CNN version classified the 10K test images of the
MNIST dataset in one runtime. We executed five times every
variant and informed the average in seconds. The results are
presented in Table I

Hardware Model Runtime [S] Accuracy Size [Kb]
PC NoquantMNIST 512 0.9866 81
PC QuantMNIST 11.64 0.9864 23

MPSoC QuantMNIST 5.22 0.9866 -

TABLE I
MEMORY REQUIREMENTS AND RUNTIME RESULTS

In the first study, we evaluate the consequences of quan-
tization from a quality perspective on both PC models.
The model’s accuracy is almost the same independently
of the quantization step, although there is a 4x model
size compression. Considering the runtime performance, the
non-quantized model for PC spent 46x more time than
the quantized variant for the same hardware. These results
highlight the importance of the quantization tool since we
can reduce the storage space with a negligible loss of
accuracy and achieve a massive improvement in runtime.

On the other hand, the MPSoC version outperforms the
CPU quantized version with a speedup higher than 2×. It

is essential to highlight that the Ultra96-V2 board is an
entry-level, low-cost, and low-power consumption comput-
ing board. In contrast, the PC characteristics are better than
average.

The previously summarized results show that even using
the generic Vitis AI framework to deploy the CNN in FPGA,
the reconfigurable device offers important benefits from the
runtime perspective.

D. Related works

Previous works show a comparison of CNN models
deployed in different hardware. In [14], the authors propose
a BNN hardware accelerator design, then implement it on
an FPGA, ASIC, CPU, and GPU hardware platforms. The
results show that FPGA provides superior efficiency over
CPU and GPU but less than ASIC. Another comparative
study is proposed in [15] where the author implemented
CNN models in two edge devices, an Arty Z7-20 board with
an SoC Zynq-7020 (Arm + FPGA) and a Jetson nano GPU
board. The results show that the SoC board achieves more
performance than the GPU board but implies more effort to
deploy the model. [16] is a complete study that provide eval-
uation of different CNNs and hardware platforms, focusing
on the impact of pruning and quantization as optimization
techniques. The authors benchmark FPGA, GPU, TPU, and
VLIW processors for pruned and quantized neural networks,
considering power, latency, and throughput. The result show
that FPGAs benefit the most from quantization.

V. CONCLUSIONS

In this work, we have evaluated the use of FPGAs to
compute the inferencing stage of CNN. More in detail, we
explore the compromise between the easy use of modern
direct tools of Xilinx and the achieved performance by the
generated configuration by this tool. To reach our objective,
we follow an IA workflow for training and inferencing
CNN in hybrid architectures. Starting with the mention
of the available tools and the step followed to achieve a
functional version of an image classification application.
We summarize the workflow for training and inferencing
neural networks in MPSoC boards. Finally, We evaluated
the performance achieved by the low-power and low-budget
ultra96-V2 board and compared it with a PC performance.
The ultra96-V2 got a higher performance than the PC,
spending half the runtime classifying the 10K test images
of the MNIST database.

The evolution of FPGA to integrate hybrid technologies
with multi-processors like the Xilinx MPSoC used in this
work, in addition to new development frameworks that
integrate high-level synthesis tools, expands the use of these
technologies to researchers without knowledge of hardware
development. In particular, the PYNQ framework allows
using hardware libraries called overlays without involving
low-level details. In addition, conventional IA frameworks
like Tensorflow, PyTorch, and Caffe are integrated into
the PYNQ tool, improving the development of new IA
applications. At this moment, developing IA applications to
run in hybrid technologies demands more effort to establish
the development environment and understand the conven-
tional IA frameworks than the hardware design complexity

julio
XI Southern Conference on Programmable Logic SPL2023 15

described in hardware description languages (HDL). In this
scenario, FPGA attributes can benefit embedded software
engineers and IA domain experts.

In the future, the team will expand the comparative study
in different lines. The most important ones are:

• The extension of the evaluated data set, in particular,
including problems with different data types.

• The exploration of new hardware platforms like rasp-
berry pi, Kria KV260 boards, and cloud-computing
technologies for datacenters like Alveo cards.

• The inclusion of a deep comparison with a highly tuned
design of a CNN for FPGAs.

REFERENCES

[1] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” vol. 2018, pp.
1–13, 2018. [Online]. Available: https://www.hindawi.com/journals/
cin/2018/7068349/

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” vol.
521, no. 7553, pp. 436–444, 2015. [Online]. Available: http:
//www.nature.com/articles/nature14539

[3] L. Deng and D. Yu, “Deep learning: Methods and applications,”
Foundations and Trends® in Signal Processing, vol. 7, no. 3–4,
pp. 197–387, 2014. [Online]. Available: http://dx.doi.org/10.1561/
2000000039

[4] D. Ghimire, D. Kil, and S.-h. Kim, “A survey on efficient convolu-
tional neural networks and hardware acceleration,” 03 2022.

[5] Y. Tao, R. Ma, M.-L. Shyu, and S.-C. Chen, “Challenges in energy-
efficient deep neural network training with fpga,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2020, pp. 1602–1611.

[6] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Un-
derstanding performance differences of fpgas and gpus,” in 2018
IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2018, pp. 93–96.

[7] X. Liu, H. A. Ounifi, A. Gherbi, Y. Lemieux, and W. Li, “A hybrid
gpu-fpga-based computing platform for machine learning,” Procedia
Computer Science, vol. 141, pp. 104–111, 2018, the 9th International
Conference on Emerging Ubiquitous Systems and Pervasive
Networks (EUSPN-2018) / The 8th International Conference on
Current and Future Trends of Information and Communication
Technologies in Healthcare (ICTH-2018) / Affiliated Workshops.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877050918318052

[8] K. Seng, P. Lee, and L. Ang, “Embedded intelligence on fpga: Survey,
applications and challenges,” Electronics, vol. 10, p. 895, 04 2021.

[9] Z. Wang, H. Li, X. Yue, and L. Meng, “Briefly analysis about
cnn accelerator based on fpga,” Procedia Computer Science, vol.
202, pp. 277–282, 2022, international Conference on Identification,
Information and Knowledge in the internet of Things, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1877050922005701

[10] Z. Lin, J. M. Ota, J. D. Owens, and P. Muyan-Özcelik, “Benchmark-
ing deep learning frameworks with fpga-suitable models on a traffic
sign dataset,” in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018,
pp. 1197–1203.

[11] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[12] “MNIST handwritten digit database, Yann LeCun, Corinna Cortes and
Chris Burges.” [Online]. Available: http://yann.lecun.com/exdb/mnist/

[13] “DPU on PYNQ,” Dec. 2022, original-date: 2020-04-29T23:43:53Z.
[Online]. Available: https://github.com/Xilinx/DPU-PYNQ

[14] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating Binarized Neural Networks: Comparison of
FPGA, CPU, GPU, and ASIC,” in 2016 International Conference on
Field-Programmable Technology (FPT), Dec. 2016, pp. 77–84.

[15] L. Pettersson, “Convolutional neural networks on fpga and gpu on
the edge: A comparison,” 2020.

[16] M. Blott, N. J. Fraser, G. Gambardella, L. Halder, J. Kath, Z. Neveu,
Y. Umuroglu, A. Vasilciuc, M. Leeser, and L. Doyle, “Evaluation
of optimized cnns on heterogeneous accelerators using a novel
benchmarking approach,” IEEE Transactions on Computers, vol. 70,
no. 10, pp. 1654–1669, oct 2021.

https://www.hindawi.com/journals/cin/2018/7068349/
https://www.hindawi.com/journals/cin/2018/7068349/
http://www.nature.com/articles/nature14539
http://www.nature.com/articles/nature14539
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1561/2000000039
https://www.sciencedirect.com/science/article/pii/S1877050918318052
https://www.sciencedirect.com/science/article/pii/S1877050918318052
https://www.sciencedirect.com/science/article/pii/S1877050922005701
https://www.sciencedirect.com/science/article/pii/S1877050922005701
http://yann.lecun.com/exdb/mnist/
https://github.com/Xilinx/DPU-PYNQ
julio
XI Southern Conference on Programmable Logic SPL2023 16

Sphery vs. Shapes: A hardware-only raytraced game
1st Victor Suarez Rovere
Buenos Aires, Argentina
suarezvictor@gmail.com

2nd Julian Kemmerer
Philadelphia, USA

julian.v.kemmerer@gmail.com

Abstract—In this article we present a tool flow that takes C++
code describing a raytraced game, and produces digital logic that
can be implemented in an off-the-shelf FPGA with no use of a
hard or soft CPU. We aim for these tools to achieve a friendly C-
to-FPGA flow, making the development and simulation process
exceptionally fast and easy, while providing high performance
and low power results in hardware.

Index Terms—FPGA, raytracing, DSP, simulation

I. INTRODUCTION

In this work we propose a interactive ray tracing sys-
tem implemented entirely in hardware using a FPGA (Field
Programmable Gate Array). It serves as a perfect example
that such complex data processing circuits can be developed,
tested, and implemented all from a C language based flow.
This greatly eases the design process over traditional hardware
description languages.

The ability to compile the sources directly as C++ code
allows for ultra-fast prototype testing (up to realtime speeds).
C++ based cycle accurate emulation tools like Verilator [1]
allow for fast simlations, but at a pace that is still much slower
than directly compiled C code. A truely realtime simulation
workflow is essential for developing an interactive game: to
compile-as-C and see the results of code changes executed
in realtime is not possible with standard FPGA simulators or
synthesis tools.

The project generates each video pixel in hard-realtime
“chasing the beam” fashion, without a frame buffer and with
negligible jitter. Two medium size FPGA devices were selected
for implementation: An AMDTM Artix-7TM (100T) and a
LatticeTM ECP5TM (85F). By using many pipeline stages
automatically generated by a custom tool, clock rates high
enough for playable speeds are possible.

This article is structured with the following sections:
hardware platforms and software components are detailed,
followed by methods used in the form of a workflow of tools.
A final section describes the results obtained in regards to
running times, graphics resolution, pipeline depth and power
consumption.

II. MATERIALS AND METHODS

This work integrates software and hardware components
in a custom workflow that processes C sources through to
generating the programmable logic device configuration.

Fig. 1. Hardware prototype.

A. Hardware Architecture
The project was tested on two off-the-shelf FPGA boards:
• A fully open source board based on a Lattice ECP5

FPGA with 85K LE. A DigilentTM PMODTM-compatible
accessory was used as a digital video connector to adapt
3.3V levels from the FPGA to CML (Current Mode
Logic) compatible levels, suitable for generating DVI
(Digital Video Interface) signals capable of driving an
HDMITM display. The main board, a OrangeCrab [2], is
shown in Fig. 1 connected to the video adapter.

• A DigilentTM Arty A7 board based on an Artix7-100T
FPGA, with the addition of a parallel RGB to DVI
adapter.

B. Software Architecture
To get the FPGA bitstream from the C sources, we inte-

grated the following components:
• CflexHDL [3] for C++ parsing, fixed point types and

arbitrary width floating point types, and vector of these
using operator overloading

• Clang’s cindex [4] to help in parsing C++
• PipelineC [5] tool (C to VHDL with autopipelining)
• A custom simulator capable of reading the CPU energy

meters to estimate power usage, using the SDL [6]
libraries for displaying the rendered graphics

• Yosys [7] tool for Verilog parsing and synthesis and
NextPNR [8] tool for place and route (ECP5 target)

• AMD VivadoTM for Verilog to bitstream generation (Ar-
tix7 target)

• Verilator for logic level simulation
• GHDL [9] from a Yosys plugin [10] for VHDL to Verilog

conversion (used by Verilator and for synthesis)
• LiteX [11] for the SoC design of the test boards, and its

video core with serialized digital outputs (DVI)

C. Workflow
The workflow allows writing algorithms involving complex

types like structures, fixed and floating point numbers and

julio
XI Southern Conference on Programmable Logic SPL2023 17

operations on vectors of these, all composable using a clean
and familiar C/C++ syntax.

hit_out ray_sphere_intersect(vec3 center,
point_and_dir hitin)

{
vec3 rc = hitin.orig - center;
float b = dot(rc, hitin.dir);
float c = dot(rc, rc) -

SPHERE_RADIUS*SPHERE_RADIUS;
float diff = b*b - c;
[...]

}

As shown in the above function (actual source from the
raytracer), the prototype shows a 3D float vector data type
is used as 1st argument, and structures are used for the 2nd

argument and return type. In the first line of the function’s
body a subtraction operation is done between 3D float vector
types, and in the following line there is a call to a function
taking two 3D float vectors and returning a float scalar.
This kind of flexibility and clean syntax makes for easy
development of math-intensive algorithms, as used in graphics
or general DSP (Digital Signal Processing).

The source code is first converted by the CflexHDL tool
from C++ to C, translating math operations over types to
function calls. Then this subset of C is converted to VHDL
by the PipelineC tool. To synthesize that output into a netlist,
ghdl and yosys commands are used, with place and route
done by nextpnr. Alternatively, the Vivado tool can generate
the bitstream right from the generated VHDL files.

In addition to source conversion, the PipelineC tool is
primarily the mechanism for producing pipelined digital logic
from the pure combinatorial logic derived C code. The tool
is aware of the FPGA timing characteristics for the specific
device (by iterating with the synthesis tool) and adds pipelin-
ing as needed to meet timing. This avoids the tedious and
error-prone task of manual pipelining that digital designers
are familiar with. The tool reports a preliminary estimate of
resources prior to synthesis and the amount of pipeline stages
required to implement the user’s functionality.

Alternatively, as shown on the left branch of Fig. 2, sources
can be compiled and run “as C” as a kind of ultra-fast
simulation. As another option, the Verilog sources can be
processed by Verilator to generate C++ simulation code which
is then run and used to show results graphically in the custom
simulation setup we provide. An estimation of resource usage
is also reported via instrumented C++ template classes and
operator overloading that counts operations between fixed
and/or float types. The precision of the fixed and float types
can be arbitrarily set simply by changing constants in the
source code. Then, using fast simulations, it is easy to iterate
on the bit precision number to determine an optimal balance
of resource usage v.s. visual graphics quality.

III. RESULTS

We evaluated various aspects of the workflow: how devel-
opment time is reduced, the maximum resolution achievable

Fig. 2. Tool flow.

Fig. 3. Effect mantissa precision of float types. Left: 23 bits. Right: 14 bits.

using standard video refresh rates, how the PipelineC tool
iterated on the number of pipeline stages required to reach the
target frequency, and the required precision of data types to
meet resource usage requirements on each device (both tested
cases). For comparison purposes we also measured the power
required by the FPGA platform, and the power usage of a
reference PC platform running the game as software.

A. Required data types

To be able to fit the design into the the target devices, float
types were represented with a 14 bit mantissa (instead of the
typical 23 bits). Fixed point processing also needed to save
resources, and a total of 22 bits was used: 12 for integer
portion, 10 for the fractional bits. Those arbitrary-sized types
are provided by the CflexHDL and PipelineC type libraries.
The effects of the reduced precision can be readily appreciated
with the provided graphical simulation tool, as shown in Fig.
3.

B. Pipeline stages

We selected a target of 148.5 MHz pixel clock on the Artix-
7, required to meet standard FullHD video timings (1920x1080
at 60Hz). A 25MHz pixel clock target was set for the smaller

julio
XI Southern Conference on Programmable Logic SPL2023 18

Fig. 4. Resulting pipeline for the ECP5 target.

TABLE I
STAGES PER OPERATION

Operation Stages
Fixed Compare 1 stage

Fixed Addition/Subtraction 2 stages
Fixed Multiplication 2 stages

Float Compare 2 stages
Float Multiplication 2 stages

Float Addition/Subtraction 3 stages
Float Fast Reciprocal 3 stages

Float Fast Reciprocal Square Root 3 stages
Float Fast Square Root 3 stages

Float Fast Division 4 stages
Float 3D Vector Dot Product 5 stages
Float 3D Vector Normalize 7 stages

Ray Plane Intersection 10 stages
Ray Sphere Intersection 22 stages

TABLE II
TOOL RUNNING TIMES

Simulation kind Build command Build time Speed @1080p
CPU - Fast make sim 1s 60-86 FPS

CPU - Precise make gen 5s 40FPS
Logic make verilator 1min 50s 50s per frame

ECP5, for compatibility with 640x480 pixels at 60Hz. To meet
the faster pixel clock on the Artix device, the PipelineC tool
created a rendering pipeline of ∼400 stages, and ∼70 stages
were necessary to meet the slower resolution on the ECP5
device. We happily remark that the latter platform allowed for
a full open-source toolchain. The resulting pipeline stages for
the ECP5 case are shown on Fig. 4. Common operations were
subdivided as shown on Table I.

C. Tool running time

The typical times for development/test cycles, as in Table
II, are quite fast as compared with the traditional workflows.
Build time to run the project during normal devopment is less
than a second using a typical PC.

D. Pipelined system compared to a CPU architecture

We compared our design with a quite powerful and mod-
ern CPU-based platform: a AMD Ryzen™ 4900H 8-core/16
threads 64-bit CPU @ up to 4.4GHz clock, fabricated using
a 7nm silicon process, at 45W TDP (Thermal Design Power),

running Linux in a desktop PC. Using the SIMD (Single
Instruction Muliple Data) vector float processing offered by
the CPU and compiler, we see performance doubled over
doing part of the calculations in fixed point (as in the FPGA
case). Indeed, the vector extensions and an all-floating point
processing was required to reach 60 FPS (frames per second)
at the same resolution as in FPGA. The C code for both
targets was unchanged beyond simple type definitions to select
between float or fixed types (typedef C keyword), while the
same syntax for math operations was kept by using C++
operator overloading. So the rendering source code remains
exactly the same for running interchangeably on the CPU or
in the FPGA, even when not all data types are the same.

Comparing a FPGA with a CPU is not an easy task: you can
always use a bigger and more modern FPGA than the one we
used, but we avoided too large devices on purpose. This is to
make more accessible the test platforms, and ease reproduction
of our results. Also, you can always use a CPU with more
cores, bigger caches, faster clocks, smaller transistors, etc. But
each time you add more silicon real estate to a computing
platform and - in doing so achieve higher performance - the
system will naturally will demand more power. Because of
that, we think that evaluating the power consumption per
operation is a good way to make a fair comparison.

When running the game on the PC platform, the system
uses 97.5% of the CPU (all cores/threads are active). It ran at
88ºC with the fans at their highest speed, and consumed 33W
as reported by our simulator which accesses and reports the
energy meters internal to the CPU (energy metering was dis-
abled during any excess time after each frame was rendered).
The average clock rate of the 16 threads was automatically set
by the CPU at 4.220GHz (96% of max clock), thus equivalent
to 67.5GHz of a theoretical single-thread CPU. We remark
that the power required for the external DDR4 memory bank
is not taken into account, nor the energy needed to run fans,
but those devices usually take several watts combined.

On the other hand we have our FPGA platform for achieving
same resolution and FPS: a medium-sized and low cost chip
from same vendor as the CPU, not requiring active cooling,
and fabricated on a much older silicon process of 28nm instead
of the 7nm of the CPU. We estimated that the FPGA packs
just about 13% of the transistor per mm2 based on average
density for those silicon processes [12]. Considering that the
FPGA’s die size is about half as large (a gross estimation

julio
XI Southern Conference on Programmable Logic SPL2023 19

Fig. 5. Processing performance. Blue: CPU. Orange: FPGA

using die pictures having some size references) we calculated
the FPGA has ∼15X less transistors and other silicon features
compared to the CPU. The clock rate was set to 148.5MHz
matching the requirements for the video generation, and the
automatically generated pipeline resulted in 482 stages. A
total of 135 hardware multipliers are run in parallel, used for
floating point or integer/fixed point operations.

The full pipeline required 37Kbits of flip flops, correspond-
ing to an average of 83 bits per operation, constituting a
theoretical peak internal bandwidth of 5.4Tbit/s. Computing
the 482 stages/∼operations simultaneously at such frequency
is roughly equivalent to theoretical 71.5GHz clock rate one
operation per cycle execution, a number that closely matches
the theoretical single-threaded CPU case.

The workload required to raytrace the FullHD image on the
FPGA was on the order of 300 arithmetic and logic operations
over integers, and about 150 floating point operations per
pixel (including comparisons and optimized operations on
just the exponent por power-of-two scalings), all running
simultaneously at up to 148.5MHz rate.

Even with all these realtime compute demands, the power
required by the FPGA core was just 660mW for the FullHD
target resolution, and the chip stayed barely warm. So, our
system having an order of magnitude less silicon resources,
resulted in 50X less power consumption than a modern CPU
running the same workload, or equivalently, a 50X processing
performance improvement per unit power, as depicted in Fig.
5. We expect the efficiency gains could improve up to about
6X when using a more modern FPGA (if built on a 7nm
process), since Dennard’s law seems to hold at the set speed,
see [12]. The improvement could be even higher if the digital
design were to be implemented in an ASIC, something that
we plan to test.

IV. CONCLUSIONS

We showed a ready-to-use toolchain for hardware design
based on a familiar programming language syntax that greatly

accelerates development time by using fast simulators at
different stages. The code can be translated to a logic circuit
or run on an off-the-shelf CPU. An example application
requiring complex processing was demonstrated by writing
a game that implements the usual operations for raytracing
applications, with a clean syntax for the math and the other
algorithms. Since we apply an automatically calculated and
possibly long pipeline, the system is capable of performing
very well even compared to powerful modern CPUs, but
using smaller and embeddable chips, at low power.

The full source code associated with this work can be
found on the project’s repository [13].

V. ABOUT THE AUTHORS

This work is a result of the tight interactions between Julian
Kemmerer and Victor Suarez Rovere during about a year.

Victor Suarez Rovere is the author of CflexHDL tool used
in this project (C++ parser/generator, math types library and
simulation) and of the Sphery vs. Shapes raytraced game. He is
a software and hardware developer and consultant experienced
in Digital Signal Processing, mainly in the medical field.
Victor was awarded the first prize in the Argentine National
Technology contest, a gold medal from WIPO as “Best young
inventor” and some patents related to a multitouch technology
based on tomography techniques.

Julian Kemmerer is the author of the PipelineC tool
(C-like HDL with auto-pipelining) used in this work. He
earned a Masters degree in Computer Engineering from
Drexel University in Philadelphia where his work focused on
EDA tooling. Julian currently works as an FPGA engineer
at an AI focused SDR company called Deepwave Digital.
He is a highly experienced digital logic designer looking to
increase the usability of programmable devices by moving
problems from hardware design into a familiar C language
look.

REFERENCES

[1] Verilator - open source Verilog/SystemVerilog logic simulator - https:
//www.veripool.org/verilator/

[2] OrangeCrab board - https://1bitsquared.com/products/orangecrab
[3] CflexHDL tool - C to FPGA tool, type library, and fast simulator -

https://github.com/suarezvictor/CflexHDL
[4] Clang’s cindex parser - https://github.com/llvm-mirror/clang/blob/

master/bindings/python/clang/cindex.py
[5] PipelineC tool - C to FPGA with autopipeliner - https://github.com/

JulianKemmerer/PipelineC
[6] SDL graphics and UI libraries - https://www.libsdl.org/
[7] Yosys Verilog RTL synthesis tool - https://yosyshq.net/yosys/
[8] NextPNR place and route tool - https://github.com/YosysHQ/nextpnr
[9] GHDL - open source VHDL simulator - http://ghdl.free.fr/

[10] GHDL plugin for Yosys - https://github.com/ghdl/ghdl-yosys-plugin
[11] LiteX system-on-chip creator for FPGA platforms - https://github.com/

enjoy-digital/litex
[12] Nadine Collaert, 2016: Device architectures for the 5nm technol-

ogy node and beyond - https://bjpcjp.github.io/pdfs/chips/SEMICON
Taiwan 2016 collaert.pdf

[13] Sphery vs. Shapes repository - https://github.com/JulianKemmerer/
PipelineC-Graphics

julio
XI Southern Conference on Programmable Logic SPL2023 20

Remote Lab: an implementation guide and case study
with free hardware boards

Astri Edith Andrada Tivani
Departamento de Electrónica
Facultad de Ciencias Físico

Matemáticas y Naturales
Universidad Nacional de San

Luis
San Luis, Argentina

aeandrada@unsl.edu.ar

Juan Ignacio Vergés
Departamento de Electrónica
Facultad de Ciencias Físico

Matemáticas y Naturales
Universidad Nacional de San

Luis
San Luis, Argentina

juaniverges@gmail.com

Julio Daniel Dondo Gazzano
Departamento de Electrónica
Facultad de Ciencias Físico

Matemáticas y Naturales
Universidad Nacional de San

Luis
San Luis, Argentina
jdondo@unsl.edu.ar

Andrea Schwandt
Department of Electrical
Engineering, Mechanical

Engineering
Universidad de Ciencias

Aplicadas de Bonn-Rhein-Sieg
Sankt Augustin, Alemania

Andrea.Schwandt@h-brs.de

Abstract—The article aims to present the conceptual and
preliminary results of scientific, pedagogical and technological
research oriented to the implementation of remote laboratories.
The main characteristics of remote laboratories and a tentative
guide for their implementation, based on an international
standard, are presented. The use of Python and microcontrollers
is a recurrent practice nowadays, which deserves to be taken into
account in the creation of a teleoperation project to turn it into a
real practice scenario for engineering students. At present,
educational institutions are taking into account other
independent training processes, mediated by various
technologies, in order to promote learning without limitations of
location, occupation or age of students.

Keywords—remote lab, python, microcontrollers,
implementation guide

I. INTRODUCCIÓN

A principios del siglo XXI se reconoce, en diferentes
ámbitos, un cambio de época, a raíz de las transformaciones
de las prácticas y códigos comunes, que permean a través de
todo el globo. Tal como lo expresa Alcañiz [1] las Tecnologías
de la Información y la Comunicación (TIC) son las que
mayores modificaciones han experimentado y representan el
núcleo axial de los cambios sociales.

Las prácticas de laboratorio, definidas en la siguiente
sección, son imprescindibles en la labor educativa, sobre todo
de carreras como las ingenierías. Dichas prácticas deben estar
accesibles y presentes para usufructuar sus beneficios como
herramienta pedagógica en el escenario actual, donde la
educación a distancia, la virtualidad y los modelos híbridos
delinean los nuevos horizontes de la enseñanza.

En el presente trabajo se proponen los lineamientos para
diseñar un laboratorio remoto, enmarcado en la normativa
internacional y un ejemplo de aplicación con placas de
hardware libre.

II. LABORATORIO REMOTO

Un laboratorio es tanto el lugar físico donde se encuentra
la planta real sobre la cual se realizan actividades de
experimentación como el proceso de enseñanza-aprendizaje
que es facilitado y, a la vez, regulado por el docente que
permite integrar los conocimientos relacionados con los

conceptos, los procedimientos y las actitudes en la enseñanza
y el aprendizaje de las ciencias.

Basándonos en la clasificación de Dormido [2] y en la
normativa de la IEEE podemos definir un laboratorio remoto
como un laboratorio de naturaleza física, no virtual, donde
el acceso a los recursos es de forma remota para los fines de
experimentación.

La manipulación remota de los recursos de un laboratorio
se ha facilitado gracias a la red mundial de Internet, a la
evolución de dispositivos audiovisuales (cámaras web,
micrófonos, etc), a la evolución de hardware para la
adquisición local de datos y al software que permite la
sensación de proximidad con el equipamiento.

III. LABORATORIO REMOTO COMO HERRAMIENTA EN LA

EDUCACIÓN

En la transición de la pedagogía del siglo XX al siglo XXI
se ha observado la necesidad de contar con otras herramientas
en la educación, como lo ven Romaní y Zaragoza [3], ya que
se cambia el centro del “enseñar” al “aprender”, sin olvidar
que se continúa necesitando del enseñar, actualizando los roles
del educador y el educando. Citando textualmente, el
aprendizaje requiere estar “mucho más próximo a la
“experiencia” de realidad que, a los saberes fragmentados
ilustradamente en disciplinas y materias inconexas, por lo
menos al entender del que aprende, enmarcando así un reto de
altos vuelos y mucho compromiso por parte de todos”.

Los laboratorios remotos son una estrategia para el
desarrollo del componente práctico en los procesos de
enseñanza-aprendizaje, ya que habilitan la optimización de los
recursos humanos y materiales de los laboratorios
tradicionales, por medio de la integración de las herramientas
necesarias para la ejecución de las prácticas, mejorando así la
disponibilidad de la infraestructura y equipamiento del
laboratorio; a su vez éste tipo de herramienta provee una
posible flexibilización de los planes de estudios, fortaleciendo
el trabajo colaborativo, el intercambio de ideas y el trabajo en
equipo, favorece el desarrollo del autoaprendizaje ya que
permite el uso de experimentos a modo de prueba y error, sin
miedo a sufrir o provocar un accidente. Se destaca también la
reducción de costos de montaje y mantenimiento.

2022 IEEE

mailto:aeandrada@unsl.edu.ar
mailto:juaniverges@gmail.com
mailto:juaniverges@gmail.com
mailto:Andrea.Schwandt@h-brs.de
julio
XI Southern Conference on Programmable Logic SPL2023 21

IV. ANTECEDENTES

Para la realización de este trabajo se estudió el FPGA
Vision Remote Lab1, proyecto de la Universidad de Ciencias
Aplicadas de Bonn-Rhein-Sieg, iniciado en el año 2017. La
finalidad del laboratorio es acompañar el aprendizaje del
estudiante en la temática del procesamiento de imágenes con
una FPGA, posee clases en formato vídeo explicando el
algoritmo y la implementación de la detección de carriles, el
filtrado FIR y el aprendizaje automático. El hardware real está
disponible como laboratorio remoto, las 24 horas todos los
días de la semana, para lo cual se le realiza mantenimiento
regularmente y, como mínimo, el laboratorio estará disponible
hasta el año 2025 La interfaz de usuario puede observarse en
la Fig. 1.

El foco principal de las actividades de laboratorio es
cumplir objetivos pedagógicos y desarrollar habilidades
experimentales. Por ésto en el año 2019 la IEEE publica el
estándar IEEE Standard for Networked Smart Learning
Objects for Online Laboratories [4] con el propósito de
facilitar el diseño, la implementación y el uso de laboratorios
en línea para la educación, teniendo en cuenta que las
actividades de laboratorio son requeridas en la Educación en
Ingeniería, Ciencia y Tecnología.

A. Síntesis del estándar
El estándar define métodos para almacenar, recuperar y

acceder a laboratorios en línea 2como a los datos asociados de
los denominados objetos de aprendizaje3 los cuales son
inteligentes e interactivos.

3 Se dice de cualquier entidad digital o no digital que puede ser usada,
re-utilizada o referenciada para el aprendizaje soportado en tecnología

2 Un laboratorio al que se puede acceder a través de redes informáticas, como
Internet. Un laboratorio en línea puede ya sea virtual, remoto o híbrido de los
dos.

1 https://www.h-brs.de/de/fpga-vision-lab

Para realizar la implementación de laboratorios en línea se
utiliza un modelo en capas. La primera capa estandariza un
laboratorio en línea como servicio (LaaS), que se puede
personalizar en la segunda capa. La segunda capa describe un
laboratorio en línea como un objeto de aprendizaje (LO), que
se puede integrar en varios entornos de aprendizaje, incluidos
cursos masivos abiertos en línea (MOOC), sistemas de gestión
de aprendizaje (LMS), repositorios de recursos de aprendizaje
y aplicaciones móviles.

En el contexto de este estándar, LaaS se define como un
conjunto de requisitos de interfaz que deben cumplirse para
satisfacer el primer nivel de estandarización. Esto proporciona
una interfaz estándar. Una vez que se establece esta interfaz,
un laboratorio en línea debe encajar dentro de los marcos de
aprendizaje como un objeto de aprendizaje para proporcionar
valor pedagógico. Esta capacidad, sin embargo, no es algo que
pueda garantizarse. Por lo tanto, el segundo nivel de
estandarización se define como un conjunto de prácticas
recomendadas.

V. LINEAMIENTOS PARA IMPLEMENTACIÓN DE LABORATORIOS

REMOTOS

A continuación, se propone una guía para la organización
requerida al momento de implementar laboratorios remotos:

1) Establecer pautas comunes y describir las acciones
requeridas para la implementación de prácticas de laboratorio
con acceso remoto entre los interesados.

2) Realizar un manual de implementación de
Laboratorios Remotos que cumpla con los requisitos del
estándar IEEE Std 1876TM-2019.

3) Establecer las políticas, sistemas, procedimientos e
instrucciones con la extensión necesaria para lograr la mejora
continua de la calidad del laboratorio remoto a implementar y
plasmarlas en el manual confeccionado.

4) Organización y Gestión:
a) Docente responsable: cada docente es el responsable

del laboratorio que emplaza, por este motivo posee autoridad,
recursos e independencia para desempeñar sus funciones. Lo
mencionado anteriormente lleva a que el docente esté en
condiciones de tomar decisiones relacionadas a los aspectos
técnicos y sobre los recursos propios de su laboratorio. Es
responsabilidad del docente asegurar que las políticas del
manual (del punto 3) se implementen y sean seguidas en todo
momento. El docente se debe comprometer a resguardar los
datos personales, codificaciones y resultados obtenidos de los
estudiantes que utilicen el laboratorio. También es
imprescindible que el docente responsable designe un
reemplazante en caso de ausencia y éste podrá tomar
decisiones en los aspectos relacionados con las actividades del
laboratorio. Se requiere la realización de reportes desde la
creación, modificación, actualización y otros eventos que se
efectúen a raíz de los diferentes cambios del laboratorio
remoto.

b) Estructura organizacional: la estructura de la
organización educativa a la que pertenece el docente
responsable deberá conocer los docentes que poseen
laboratorios remotos emplazados y las prácticas que se pueden

https://www.h-brs.de/de/fpga-vision-lab
julio
XI Southern Conference on Programmable Logic SPL2023 22

desarrollar en los mismos, a fin de distribuir los recursos de
forma óptima.

c) Estudiante: el estudiante se debe comprometer a
utilizar de forma responsable el laboratorio con las
herramientas y pautas brindadas por el docente, para
actividades académicas pactadas o de investigación,
empleando los tiempos asignados y resguardando la
información personal y del laboratorio. El estudiante requiere
tomar medidas de seguridad informática personales al
momento de hacer uso del laboratorio remoto.

5) Implementación en capas: la implementación de los
laboratorios remotos responderá a un modelo en capas. En
base al estándar IEEE Std 1876TM-2019, se pueden
diferenciar cuatro capas, a saber: capa #0 de Hardware y
Software, capa #1 Laboratorio en línea como Servicio (Lab as
a Service - LaaS), capa #2 describe un Laboratorio en línea
como Objeto de Aprendizaje (Lab as Learning Object - LO) y
la capa #3 llamado Entorno de Aprendizaje, ejemplos de ellos
son los cursos en línea masivos y abiertos (MOOC), los
sistemas de gestión del aprendizaje (LMS), los repositorios de
recursos de aprendizaje y las aplicaciones móviles. Para
observar la figura asociada ver Fig. 2.

Fig. 2. Capas conceptuales e información del estándar IEEE Std
1876TM-2019

6) Control de la documentación y la información en
capas: la distribución y archivo de los documentos, tanto
aquellos que regulan el funcionamiento de los laboratorios
remotos como los que se generan como consecuencia de su
actividad, se realizan en forma controlada por los docentes,
permitiendo en todo momento su correcta identificación y
trazabilidad. Los documentos deberán estar disponibles en un
repositorio digital, donde puedan ser periódicamente
examinados, revisados y reemplazados cuando estén obsoletos
o invalidados por parte de las personas que los elaboraron.

7) Revisión de implementación realizada: cada
laboratorio que se emplaza debe ser revisado para que cumpla
con las características esperadas.

8) Adquisición de suministros: las compras de insumos
que atañen a los laboratorios remotos, si las hubiera, las
especificaciones técnicas y el almacenamiento son
responsabilidad del docente que emplaza el laboratorio.

VI. CASO DE ESTUDIO: LABORATORIO REMOTO CON PLACAS

DE HARDWARE LIBRE

Con fines de profundizar el estudio de la implementación
de laboratorio remotos se desarrolló un proyecto [5] que
permitió a estudiantes acceder a prácticas pactadas,
teleoperando hardware emplazado físicamente en la
Universidad Nacional de San Luis, a través de una plataforma4

que está disponible para cualquier navegador web, siendo la
única condición indispensable tener acceso a Internet. La
estructura utilizada se puede ver en la Fig. 3.

El equipo docente, teniendo como foco principal que los
estudiantes puedan desarrollar competencias relacionadas con
el diseño de sistemas digitales, definió los objetivos, los
conocimientos previos necesarios y las actividades prácticas
propuestas. Aspectos tales como equipamiento disponible,
tecnología, lenguajes de programación compatibles y
factibilidad de reemplazo llevaron a la utilización de la placa
de desarrollo NodeMCU ESP32S con el intérprete
Micropython.

El manual5 de la implementación se encuentra en constante
actualización, para mantener la premisa de mejorar
constantemente la calidad.

La planificación de las prácticas llevó a utilizar hardware
adicional, tal como se ve en la Fig. 4, compuesto por diodo
LED, display OLED 0.96" SSD1306 y micro servomotor
tower pro SG90. La finalidad del mismo es tener actividades
de complejidad creciente, manejo de librerías y programación
con el lenguaje Python.

La preparación del material6 para la utilización del
laboratorio estuvo a cargo del docente responsable, quien
dispuso colocarlo en un repositorio con la digitalización de
consignas, material de soporte audiovisual y formularios para
evaluar la actividad y la experiencia con el laboratorio.

Fig. 3. Estructura de un laboratorio remoto.

6 Para obtener el material ingresar a https://goo.su/bykh4

5 El manual está disponible en https://goo.su/OW0ydM

4 La página de inicio de sesión en la plataforma se accede como cualquier
página de Internet a través de un navegador web mediante la URL
http://labremoto.ddns.net.

https://goo.su/bykh4
https://goo.su/OW0ydM
http://labremoto.ddns.net
julio
XI Southern Conference on Programmable Logic SPL2023 23

Fig. 4. Conexiones de placa de desarrollo NodeMCU ESP32S,
computadora de placa simple Raspberry Pi 3 B y hardware adicional.

Para alojar el servidor y todo el software requerido,
aplicaciones, programas y protocolos que responderán a las
solicitudes del usuario y grabarán el firmware en la placa
ESP32, se escogió la computadora de placa simple Raspberry
Pi 3 B. Sumado a esto se le conectó físicamente la placa
ESP32 y una cámara, que permitió visualizar la respuesta del
hardware luego de la programación realizada.

Previo al uso del laboratorio remoto, el estudiante debía
elaborar su código para programar la ESP32. Luego se
contactaba con el administrador de la plataforma para que le
suministrara las credenciales de acceso. La interfaz de usuario,
ver Fig. 5, fue generada con la herramienta Node-RED. En la
plataforma se debía ubicar la pestaña de la placa a programar y
luego cargar el archivo de extensión ".py" con el código que la
placa debía ejecutar. La Raspberry Pi se encargó de que la
ESP32 ejecute el archivo subido a través de la combinación de
dos aplicaciones: AMPy y RShell, los códigos se ejecutaron a
través de AMPy sin que la placa perdiera comunicación con la
Raspberry Pi, siempre que la terminal que establecía la
conexión de RShell con la ESP32 se mantuviera abierta. Por
simplicidad y compatibilidad, la cámara que se utilizó es la
Raspberry Pi Camera V2. Dicha cámara en combinación con
la aplicación por línea de comandos MJPG-Streamer,
capturaron el video y transmitieron en tiempo real la reacción
de la placa y del hardware adicional, para que se pueda
corroborar la funcionalidad deseada.

Fig. 5. Interfaz de usuario para programar ESP32

Se realizaron diversas pruebas de cortes de luz, cortes de
red en servidor y en usuarios, dos o más usuarios intentando
ingresar a la plataforma simultáneamente y otras de acceso
desde red externa e interna.

Como resultado de la implementación del laboratorio se
observó en sus primeros 3 meses de funcionamiento una
utilización del 33,33% sobre un total de 6 prácticas impartidas

relacionadas con microcontroladores, en 2 asignaturas de la
carrera Ingeniería Electrónica con Orientación en Sistemas
Digitales. Una aceptación del 64,28% entre un total de 14
usuarios estudiantes. La apropiación de conocimientos
aumentó considerablemente, observando la aprobación de
evaluaciones en primera instancia, de 35,71% a 71,42%.
Además se utilizó en 2 cursos extracurriculares con una
asistencia de 20 estudiantes a cada uno, teniendo una
aceptación del 65% en un curso de nivel básico de Python y
del 45% en el caso en un curso avanzado.

CONCLUSIONES

Implementar laboratorios remotos suscita mejoras en la
enseñanza de las ciencias aplicadas, brindando más
oportunidades, ampliando los momentos de experimentación y
reduciendo las limitaciones de espacio y tiempo. Es
imprescindible, tal como lo indica el estándar, no sólo
focalizar en el diseño tecnológico de los laboratorios sino
incorporar modelos didácticos y pedagógicos que promuevan
la gestión del aprendizaje de manera autónoma por parte de
los estudiantes.

Mediante el trabajo realizado se logró tener una guía
básica, con capacidad de mejora continua y basada en un
estándar internacional, para la implementación de un
laboratorio remoto.

El caso de uso confirmó la necesidad de seguir una
metodología no sólo del armado de la herramienta pedagógica
sino también de su uso por parte de docentes y estudiantes.

En un futuro se espera lograr solventar todos los
inconvenientes que afectan a la eficiencia de los laboratorios
remotos, tanto en su implementación como en su utilización,
para dar un mejor soporte a la enseñanza de la ingeniería, no
sólo a nivel local sino internacional.

REFERENCIAS

[1] Alcañiz, M. (2007). Cambios, desafíos y riesgos en el siglo XXI.
RECERCA. Revista De Pensament I Anàlisi, (7), 5-14. Disponible en:
https://www.e-revistes.uji.es/index.php/recerca/article/view/176

[2] Dormido Bencomo, S. (2004). Control learning: present and future,
Annual Reviews in Control, 28(1) 115-136, ISSN 1367-5788,
https://doi.org/10.1016/j.arcontrol.2003.12.002.

[3] Riera i Romaní, Jordi, & Civís i Zaragoza, Mireia (2008). La pedagogía
profesional del siglo XXI. Educación XX1, 11(),133-154. ISSN:
1139-613X. Disponible en:
https://www.redalyc.org/articulo.oa?id=70601107

[4] "IEEE Standard for Networked Smart Learning Objects for Online
Laboratories," in IEEE Std 1876-2019 , vol., no., pp.1-57, 30 May 2019,
doi: 10.1109/IEEESTD.2019.8723446.

[5] Vergés, J. I. (2022). Laboratorio remoto para manejo de placa de
desarrollo ESP32. (RD03 - 747 / 2022) [Proyecto Final de carrera de
Ingeniería Electrónica con Orientación en Sistemas Digitales]
Universidad Nacional de San Luis.
https://drive.google.com/file/d/1Q7pzWmL5oXoAIdN9U7wv5iunuLxL
8F3O/view?usp=sharing

https://www.e-revistes.uji.es/index.php/recerca/article/view/176
https://doi.org/10.1016/j.arcontrol.2003.12.002
https://www.redalyc.org/articulo.oa?id=70601107
https://drive.google.com/file/d/1Q7pzWmL5oXoAIdN9U7wv5iunuLxL8F3O/view?usp=sharing
https://drive.google.com/file/d/1Q7pzWmL5oXoAIdN9U7wv5iunuLxL8F3O/view?usp=sharing
julio
XI Southern Conference on Programmable Logic SPL2023 24

